1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
2 years ago
12

Explain this question​ in summary

Physics
1 answer:
pickupchik [31]2 years ago
3 0

Answer:

in region AB the body was not moving

in region BC the body was moving forward with a increasing velocity therefore accelerating constantly

in region CD the body was moving with a constant velocity hence zero acceleration

in region DE the body was moving backwards decelerating

You might be interested in
mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 2 feet below the equi
valina [46]

Answer:

The answer is

"x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))".

Explanation:

Taking into consideration a volume weight = 16 pounds originally extends a springs \frac{8}{3} feet but is extracted to resting at 2 feet beneath balance position.

The mass value is =

W=mg\\m=\frac{w}{g}\\m=\frac{16}{32}\\m= \frac{1}{2} slug\\

The source of the hooks law is stable,

16= \frac{8}{3} k \\\\8k=16 \times 3 \\\\k=16\times \frac{3}{8} \\\\k=6 \frac{lb}{ft}\\\\

Number \frac{1}{2}  times the immediate speed, i.e .. Damping force

\frac{1}{2} \frac{d^2 x}{dt^2} = -6x-\frac{1}{2}\frac{dx}{dt}+10 \cos 3t \\\\\frac{1}{2}  \frac{d^2 x}{dt^2}+ \frac{1}{2}\frac{dx}{dt}+6x =10 \cos 3t \\ \\\frac{d^2 x}{dt^2} +\frac{dx}{dt}+12x=20\cos 3t \\\\

The m^2+m+12=0 and m is an auxiliary equation,

m=\frac{-1 \pm \sqrt{1-4(12)}}{2}\\\\m=\frac{-1 \pm \sqrt{47i}}{2}\\\\\ m1= \frac{-1 + \sqrt{47i}}{2} \ \ \ \ or\ \ \ \ \  m2 =\frac{-1 - \sqrt{47i}}{2}

Therefore, additional feature

x_c (t) = e^{\frac{-t}{2}}[C_1 \cos \frac{\sqrt{47}}{2}t+ C_2 \sin \frac{\sqrt{47}}{2}t]

Use the form of uncertain coefficients to find a particular solution.  

Assume that solution equation,

x_p = Acos(3t)+B sin(3t) \\x_p'= -3A sin (3t) + 3B cos (3t)\\x_p}^{n= -9 Acos(3t) -9B sin (3t)\\

These values are replaced by equation ( 1):

\frac{d^2x}{dt}+\frac{dx}{dt}+ 12x=20 \cos(3t) -9 Acos(3t) -9B sin (3t) -3Asin(3t)+3B cos (3t) + 12A cos (3t) + 12B sin (3t)\\\\3Acos 3t + 3B sin 3t - 3Asin 3t + 3B cos 3t= 20cos(3t)\\(3A+3B)cos3t -(3A-3B)sin3t = 20 cos (3t)\\

Going to compare cos3 t and sin 3 t coefficients from both sides,  

The cost3 t is 3A + 3B= 20 coefficients  

The sin 3 t is 3B -3A = 0 coefficient  

The two equations solved:

3A+3B = 20 \\\frac{3B -3A=0}{}\\6B=20\\B= \frac{20}{6}\\B=\frac{10}{3}\\

Replace the very first equation with the meaning,

3B -3A=O\\3(\frac{10}{3})-3A =0\\A= \frac{10}{3}\\

equation is

x_p\\\\\frac{10}{3} cos (3 t) + \frac{10}{3} sin (3t)

The ultimate plan for both the equation is therefore

x(t)= e^\frac{-t}{2} (c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)

Initially, the volume of rest x(0)=2 and x'(0) is extracted by rest i.e.  

Throughout the general solution, replace initial state x(0) = 2,

Replace x'(0)=0 with a general solution in the initial condition,

x(t)= e^\frac{-t}{2} [(c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)]\\\\

x(t)= e^\frac{-t}{2} [(-\frac{\sqrt{47}}{2}c_1\sin\frac{\sqrt{47}}{2}t)+ (\frac{\sqrt{47}}{2}c_2\cos\frac{\sqrt{47}}{2}t)+c_2\cos\frac{\sqrt{47}}{2}t)  +c_1\cos\frac{\sqrt{47}}{2}t +c_2\sin\frac{\sqrt{47}}{2}t + \frac{-1}{2}e^{\frac{-t}{2}} -10 sin(3t)+10 cos(3t) \\\\

c_2=\frac{-64\sqrt{47}}{141}

x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))

5 0
3 years ago
Un puente de acero de 100 m de largo a 8° C aumenta su temperatura a 24°C ¿Cuánto medirá su longitud? Valor del coeficiente de d
BartSMP [9]

La longitud <em>final</em> del puente de acero es 100.018 metros.

Asumamos que la dilatación <em>térmica</em> experimentada por el puente de acero es <em>pequeña</em>, de modo que podemos emplear la siguiente aproximación <em>lineal</em> para determinar la longitud <em>final</em> del puente de acero (L), en metros:

L = L_{o}\cdot [1+\alpha\cdot (T_{f}-T_{o})] (1)

Donde:

  • L_{o} - Longitud inicial del puente, en metros.
  • \alpha - Coeficiente de dilatación, sin unidad.
  • T_{o} - Temperatura inicial, en grados Celsius.
  • T_{f} - Temperatura final, en grados Celsius.

Si tenemos que L_{o} = 100\,m, \alpha = 11.5\times 10^{-6}, T_{o} = 8\,^{\circ}C y T_{f} = 24\,^{\circ}C, entonces la longitud final del puente de acero es:

L = (100\,m)\cdot [1+(11.5\times 10^{-6})\cdot (24\,^{\circ}C - 8\,^{\circ}C)]

L = 100.018\,m

La longitud <em>final</em> del puente de acero es 100.018 metros.

Para aprender más sobre dilatación térmica, invitamos cordialmente a ver esta pregunta verificada: brainly.com/question/24953416

5 0
2 years ago
The picture shows a loop of wire rotating in a magnetic field in a generator. Determine the direction of the current through the
BaLLatris [955]
I believe the answer is b
3 0
3 years ago
Read 2 more answers
If a 1000-pound capsule weighs only 165 pounds on the moon, how much work is done in propelling this capsule out of the moon's g
Bas_tet [7]

Answer:

  W = 1,307 10⁶ J

Explanation:

Work is the product of force by distance, in this case it is the force of gravitational attraction between the moon (M) and the capsule (m₁)

              F = G m₁ M / r²

              W = ∫ F. dr

              W = G m₁ M ∫ dr / r²

we integrate

             W = G m₁ M (-1 / r)

                 

We evaluate between the limits, lower r = R_ Moon and r = ∞

           W = -G m₁ M (1 /∞ - 1 / R_moon)

            W = G m1 M / r_moon

Body weight is

             W = mg

             m = W / g

The mass is constant, so we can find it with the initial data

For the capsule

            m = 1000/32 = 165 / g_moon

            g_moom = 165 32/1000

            .g_moon = 5.28 ft / s²

I think it is easier to follow the exercise in SI system  

           W_capsule = 1000 pound (1 kg / 2.20 pounds)

           W_capsule = 454 N

           W = m_capsule g

           m_capsule = W / g

           m = 454 /9.8

           m_capsule = 46,327 kg

Let's calculate

          W = 6.67 10⁻¹¹ 46,327   7.36 10²² / 1.74 10⁶

          W = 1,307 10⁶ J

7 0
3 years ago
PLEASE HELP! **
Eduardwww [97]
It moves to 56 km per hours
8 0
4 years ago
Other questions:
  • The nuclei of large atoms, such as uranium, with 9292 protons, can be modeled as spherically symmetric spheres of charge. The ra
    7·1 answer
  • An ion with charge of Q = +3.2 x 10-19 C is in a region where a uniform electric field of magnitude E = 5.0 X 105 V/m is perpend
    7·1 answer
  • Sleep is a component of which part of the health triangle
    15·1 answer
  • 23.8 m/s is initial speed, then stops and travels an additional 179 m, what was the magnitude
    6·1 answer
  • The student in charge of the experiment wishes to present his/her findings in support of the theory that motor imagery and actio
    6·1 answer
  • A very thin oil film (n = 1.25) floats on water (n = 1.33). What is the thinnest film that produces a strong reflection for gree
    5·1 answer
  • Which sound would be loudest?
    12·1 answer
  • Which is the distance of the satellite from Earth?
    10·2 answers
  • A frictionless pulley used to lift 8000N of concrete. What is the minimum effort required to raise the block
    11·1 answer
  • Can someone help me with this Physics question please?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!