1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dahasolnce [82]
3 years ago
10

Maaf sebelumnya ,bisa minta tolong kerjakan tugas saya? saya harus mengerjakan tugas Fisika yang lain . tolong bantu 4 nomer saj

a .

Physics
1 answer:
AlladinOne [14]3 years ago
8 0
Sorry cant not answer this question
You might be interested in
2
ella [17]
C : I did this already
6 0
2 years ago
Read 2 more answers
Megan and her brother are watching a television program. Megan notices that the television produces a lot of light. What else do
lara [203]
I do believe it’s heat !
3 0
2 years ago
An imaginary line perpendicular to a reflecting surface is called _________.
n200080 [17]
<span>An imaginary line perpendicular to a reflecting surface is called "a normal" (principle line)

So, Your Answer would be Option B

Hope this helps!</span>
5 0
2 years ago
Read 2 more answers
A 1.0 kg copper rod rests on two horizontal rails 1.0 m apart and carries a current of 50 A from one rail to the other.
vagabundo [1.1K]

Answer

given,

mass of copper rod = 1 kg

horizontal rails = 1 m

Current (I) = 50 A

coefficient of static friction = 0.6

magnetic force acting on a current carrying wire is

           F = B i L

Rod is not necessarily vertical

F_x =i L B_d

F_y= i L B_w

the normal reaction N = mg-F y

static friction       f = μ_s (mg-F y )

horizontal acceleration is zero

F_x-f = 0

iLBd = \mu_s(mg-F_y )

 B_w = B sinθ

 B_d = B cosθ

iLB cosθ= μ_s (mg- iLB sinθ)

B = \dfrac{\mu_smg}{i(cos\theta +\mu_s sin\theta)}

\theta =tan{-1}{\mu_s}

\theta =tan{-1}{0.6}

\theta = 31^0

B = \dfrac{0.6\times 1 \times 9.8}{50(cos31^0 +0.6 sin31^0)}

       B = 0.1 T

4 0
3 years ago
A small rock is thrown straight up with initial speed v0 from the edge of the roof of a building with height H. The rock travels
Crank

Answer:

v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} }

Explanation:

The average velocity is total displacement divided by time:

v_{avg} =\dfrac{D_{tot}}{t}

And in the case of vertical v_{avg}

v_{avg}=\dfrac{y_{tot}}{t}

where y_{tot} is the total vertical displacement of the rock.

The vertical displacement of the rock when it is thrown straight up from height H with initial velocity v_0 is given by:

y=H+v_0t-\dfrac{1}{2} gt^2

The time it takes for the rock to reach maximum height is when y'(t)=0, and it is

t=\frac{v_0}{g}

The vertical distance it would have traveled in that time is

y=H+v_0(\dfrac{v_0}{g} )-\dfrac{1}{2} g(\dfrac{v_0}{g} )^2

y_{max}=\dfrac{2gH+v_0^2}{2g}

This is the maximum height the rock reaches, and after it has reached this height the rock the starts moving downwards and eventually reaches the ground. The distance it would have traveled then would be:

y_{down}=\dfrac{2gH+v_0^2}{2g}+H

Therefore, the total displacement throughout the rock's journey is

y_{tot}=y_{max}+y_{down}

y_{tot} =\dfrac{2gH+v_0^2}{2g}+\dfrac{2gH+v_0^2}{2g}+H

\boxed{y_{tot} =\dfrac{2gH+v_0^2}{g}+H}

Now wee need to figure out the time of the journey.

We already know that the rock reaches the maximum height at

t=\dfrac{v_0}{g},

and it should take the rock the same amount of time to return to the roof, and it takes another t_0 to go from the roof of the building to the ground; therefore,

t_{tot}=2\dfrac{v_0}{g}+t_0

where t_0 is the time it takes the rock to go from the roof of the building to the ground, and it is given by

H=v_0t_0+\dfrac{1}{2}gt_0^2

we solve for t_0 using the quadratic formula and take the positive value to get:

t_0=\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

Therefore the total time is

t_{tot}= 2\dfrac{v_0}{g}+\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

\boxed{t_{tot}= \dfrac{v_0+\sqrt{v_0^2+2gH}  }{g}}

Now the average velocity is

v_{avg}=\dfrac{y_{tot}}{t}

v_{avg}=\dfrac{\frac{2gH+v_0^2}{g}+H }{\frac{v_0+\sqrt{v_0^2+2gH} }{g} }

\boxed{v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} } }

5 0
3 years ago
Other questions:
  • 3. A ball is thrown up vertically, with a velocity of 20m/s. Calculate the maximum height
    7·1 answer
  • . List five endothermic reactions that are going on around you.
    13·1 answer
  • A 400-turn circular coil (radius = 1.0 cm) is oriented with its plane perpendicular to a uniform magnetic field which has a magn
    10·1 answer
  • Which of these is most likely a characteristic of a parent isotope before it releases radioactive particles?
    11·1 answer
  • A shuffleboard disk is accelerated to a speed of 5.8 m/s and released. If the coefficient of kinetic friction between the disk a
    15·1 answer
  • In which is momentum conserved: an elastic collision or an inelastic collision?
    15·1 answer
  • Please help on this one somebody? :)
    15·1 answer
  • Which of the following is true about a planet orbiting a star in the uniform circular motion? B. The speed of the plant is alway
    5·1 answer
  • Oliver builds a circuit connecting a light bulb to a battery with wires, leaving a gap in one of the wires. He places several ob
    8·1 answer
  • If you add together all of forces exerted on an object and get a non zero value this is called the _____ force on the object
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!