Complete question:
Resistor is made of a very thin metal wire that is 3.2 mm long, with a diameter of 0.4 mm. What is the electric field inside this metal resistor? If the potential difference due to electric field between the two ends of the resistor is 10 V.
Answer:
The electric field inside this metal resistor is 3125 V/m
Explanation:
Given;
length of the wire, L = 3.2 mm = 3.2 x 10⁻³ m
diameter of the wire, d = 0.4 mm = 0.4 x 10⁻³ m
the potential difference due to electric field between the two ends of the resistor, V = 10 V
The electric field inside this metal resistor is given by;
ΔV = EL
where;
ΔV is change in electric potential
E = ΔV / L
E = 10 / (3.2 x 10⁻³ )
E = 3125 V/m
Therefore, the electric field inside this metal resistor is 3125 V/m
Answer:
When you are running the most important force that you should understand is friction. Friction is a force that opposes movement between two objects, but for runners friction makes you faster. Friction gives you a better and more efficient way to use your energy into speed.
Answer:
Abdominal
Sitting up, postural alignment
Biceps
Lifting, pulling
Deltoids
Overhead lifting
Erector Spinae
Postural alignment
Gastronemius & Soleus
Push off for walking, standing on tiptoes
Gluteus
Climbing stairs, walking, standing up
Hamstrings
Walking
Latissimus Dorsi & Rhomboids
Postural alignment, pulling open a door
Obliques
Rotation and side flexion of body
Pectoralis
Push up, pull up, bench press
Quadriceps
Climbing stairs, walking, standing up
Trapezius
Moves head sideways
Triceps
Pushing
God bless you. Because my soul almost left my body when i had to do this.
For this problem, we would be using the formula: Vf^2 = Vi^2 + 2ad
where:
Vf = 400m/s
Vi = 300m/s
a = ?
d = 4.0km
= 4000m
400^2 = 300^2 + 2a4000
a = [ 160000 - 90000 ] / 8000
a = 8.75m/s^2
rounding it off to 2 significant figures, will give us 8.8 m/s^2.