Answer:
the time interval that an earth observer measures is 4 seconds
Explanation:
Given the data in the question;
speed of the spacecraft as it moves past the is 0.6 times the speed of light
we know that speed of light c = 3 × 10⁸ m/s
so speed of spacecraft v = 0.6 × c = 0.6c
time interval between ticks of the spacecraft clock Δt₀ = 3.2 seconds
Now, from time dilation;
t = Δt₀ / √( 1 - ( v² / c² ) )
t = Δt₀ / √( 1 - ( v/c )² )
we substitute
t = 3.2 / √( 1 - ( 0.6c / c )² )
t = 3.2 / √( 1 - ( 0.6 )² )
t = 3.2 / √( 1 - 0.36 )
t = 3.2 / √0.64
t = 3.2 / 0.8
t = 4 seconds
Therefore, the time interval that an earth observer measures is 4 seconds
Answer:
5.51 m/s^2
Explanation:
Initial scale reading = 50 kg
assume the greatest scale reading = 78.09 kg
<u>Determine the maximum acceleration for these elevators</u>
At rest the weight is = 50 kg
Weight ( F ) = mg = 50 * 9.81 = 490.5 N<u>
</u>
<u>
</u>At the 10th floor weight = 78.09 kg
Weight at 10th floor ( F ) = 78.09 * 9.81 = 766.11 N
F = change in weight
Change in weight( F ) = ma = 766.11 - 490.5 (we will take the mass as the starting mass as that mass is calculated when the body is at rest)
50 * a = 275.61
Hence the maximum acceleration ( a ) = 275.61 / 50 = 5.51 m/s^2
Answer:
Explanation:
Person A's velocity relative to the train is 0. Therefore, the pitch of the horn will not change.
Explanation:
the morning of the birthday party balloon filled with the 2.5 Litre of helium
temperature is 294kelvin
the party starts at the 4 p.m.
temperature rises 305 Kelvin.
the new volume = 4 litre.
At same temperature,
P
1
V
2
=P
2
V
2
(Boyle's law)
P
1
=10atm;P
2
=1atm
V
1
=4l=V
2
=8l
But while filling balloons from cylinder when pressure in cylinder becomes 1 atm then further filling is not possible (P
1
′
=9atm)
Let n be the number of balloons that can be filled.
∴P
1
′
V
1
=n(P
1
V
1
)
9×8=n(4×1)
n=
4
9×8
=18balloons
Answer:
45.6 m at
south of west
Explanation:
Let's take the north-south direction as y-direction (with south being positive) and east-west direction as x-direction (with west being positive). Therefore, the two components of Cody's motion are:
-
(south)
-
(west)
Since they are perpendicular, the magnitude of the net displacement can be calculated by using Pythagorean's theorem:

The direction instead can be measured as follows:

And given the convention we have used, this angle is measured as south of west.