X=121
.......... ... . ......
Answer:
Step-by-step explanation:
Find the sum of the squares of the residuals for
y 2x 6
A notation for representing an interval as a pair of numbers. The numbers are the endpoints of the interval. Parentheses and/or brackets are used to show whether the endpoints are excluded or included.
For example, [3, 8) is the interval of real numbers between 3 and 8, including 3 and excluding 8.
Answer:
Squaring both the sides, we get a quadratic and solving it, we find that the possible values of x are -7 and -4.
Step-by-step explanation:
The expression can be written as √(x+8) - 6 = x. Take 6 on the other side and square both the sides.
[√(x + 8)]² = (x + 6)²
x + 8 = x² + 12x + 36
x² + 11x + 28 = 0
x² + 7x + 4x + 28 = 0
(x + 7)(x + 4) = 0
x = -7 and x = -4
The possible values of x are -7 and -4.
For more explanation, refer the following link:
brainly.com/question/10572241
#SPJ10
Answer:
For 3x^2+4x+4=0
Discriminant= = -32
The solutions are
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= -44
The solutions
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= -36
The solutions
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a= (1-√-1)/3
Step-by-step explanation:
Formula for the discriminant = b²-4ac
let the discriminant be = x for the equations
The solution of the equations
= (-b+√x)/2a and = (-b-√x)/2a
For 3x^2+4x+4=0
Discriminant= 4²-4(3)(4)
Discriminant= 16-48
Discriminant= = -32
The solutions
(-b+√x)/2a =( -4+√-32)/6
(-b+√x)/2a= (-4 +4√-2)/6
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a =( -4-√-32)/6
(-b-√x)/2a= (-4 -4√-2)/6
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= 2²-4(3)(4)
Discriminant= 4-48
Discriminant= -44
The solutions
(-b+√x)/2a =( -2+√-44)/6
(-b+√x)/2a= (-2 +2√-11)/6
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a =( -2-√-44)/6
(-b-√x)/2a= (-2 -2√-11)/6
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= (-6)²-4(9)(2)
Discriminant= 36 -72
Discriminant= -36
The solutions
(-b+√x)/2a =( 6+√-36)/18
(-b+√x)/2a= (6 +6√-1)/18
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a =( 6-√-36)/18
(-b-√x)/2a= (6 -6√-1)/18
(-b-√x)/2a= (1-√-1)/3