Answer:
See below.
Step-by-step explanation:
First, notice that this is a composition of functions. For instance, let's let
and
. Then, the given equation is essentially
. Thus, we can use the chain rule.
Recall the chain rule:
. So, let's find the derivative of each function:

We can use the Power Rule here:
Now:

Again, use the Power Rule and Sum Rule

Now, we can put them together:


Answer:
4/44 i think
Step-by-step explanation:
Y=3x-9
0=3x-9
-3x=-9
x=3
X-int = 3
First, let's convert each line to slope-intercept form to better see the slopes.
Isolate the y variable for each equation.
2x + 6y = -12
Subtract 2x from both sides.
6y = -12 - 2x
Divide both sides by 6.
y = -2 - 1/3x
Rearrange.
y = -1/3x - 2
Line b:
2y = 3x - 10
Divide both sides by 2.
y = 1.5x - 5
Line c:
3x - 2y = -4
Add 2y to both sides.
3x = -4 + 2y
Add 4 to both sides.
2y = 3x + 4
Divide both sides by 2.
y = 1.5x + 2
Now, let's compare our new equations:
Line a: y = -1/3x - 2
Line b: y = 1.5x - 5
Line c: y = 1.5x + 2
Now, the rule for parallel and perpendicular lines is as follows:
For two lines to be parallel, they must have equal slopes.
For two lines to be perpendicular, one must have the negative reciprocal of the other.
In this case, line b and c are parallel, and they have the same slope, but different y-intercepts.
However, none of the lines are perpendicular, as -1/3x is not the negative reciprocal of 1.5x, or 3/2x.
<h3><u>B and C are parallel, no perpendicular lines.</u></h3>
Answer:=
Solution: -2<c<3
Interval Notation: (-2,3)
Step-by-step explanation:
-3<5c+7<22
-3<5c+7 : c>-2
5c+7<22 : c<3
combine the intervals
c>-2 and c<3
-2<c<3