Step-by-step explanation:
If the parabola has the form
(vertex form)
then its vertex is located at the point (h, k). Therefore, the vertex of the parabola

is located at the point (8, 6).
To find the length of the parabola's latus rectum, we need to find its focal length <em>f</em>. Luckily, since our equation is in vertex form, we can easily find from the focus (or focal point) coordinate, which is

where
is called the focal length or distance of the focus from the vertex. So from our equation, we can see that the focal length <em>f</em> is

By definition, the length of the latus rectum is four times the focal length so therefore, its value is

Answer:
x = -5, and y = -6
Step-by-step explanation:
Suppose that we have two equations:
A = B
and
C = D
combining the equations means that we will do:
First we multiply both whole equations by constants:
k*(A = B) ---> k*A = k*B
j*(C = D) ----> j*C = j*D
And then we "add" them:
k*A + j*C = k*B + j*D
Now we have the equations:
-x - y = 11
4*x - 5*y = 10
We want to add them in a given form that one of the variables cancels, so we can solve it for the other variable.
Then we can take the first equation:
-x - y = 11
and multiply both sides by 4.
4*(-x - y = 11)
Then we get:
4*(-x - y) = 4*11
-4*x - 4*y = 44
Now we have the two equations:
-4*x - 4*y = 44
4*x - 5*y = 10
(here we can think that we multiplied the second equation by 1, then we have k = 4, and j = 1)
If we add them, we get:
(-4*x - 4*y) + (4*x - 5*y) = 10 + 44
-4*x - 4*y + 4*x - 5*y = 54
-9*y = 54
So we combined the equations and now ended with an equation that is really easy to solve for y.
y = 54/-9 = -6
Now that we know the value of y, we can simply replace it in one of the two equations to get the value of x.
-x - y = 11
-x - (-6) = 11
-x + 6 = 11
-x = 11 -6 = 5
-x = 5
x = -5
Then:
x = -5, and y = -6
Answer:
It depends on the numbers
Step-by-step explanation:
Give some examples