Tree ring patterns provide information about precipitation and other conditions during the time the tree was alive. Scientists can learn even more about precipitation and temperature patterns by studying certain chemicals in the wood. Modern trees can be interesting to compare with local measurements (for example, temperature and precipitation measurements from the nearest weather station). Very old trees can be even more interesting because they offer clues about what the climate was like before measurements were recorded. In most places, daily weather records have only been kept for the last 100 to 150 years. Thus, to learn about the climate hundreds to thousands of years ago, scientists need to use other sources such as trees, corals, and ice cores (layers of ice drilled out of a glacier or ice sheet—mostly in Greenland and Antarctica).
Given what we know, we can confirm that hair gel is considered a noncrystalline solid due to Atoms in the hair gel having no particular order or pattern.
<h3>What is a noncrystalline solid?</h3>
- This is a solid whose atoms are amorphous.
- What this means is that the atoms lack a specific order like most solids.
- The most common example of this is glass.
Therefore, given the definition of a noncrystalline solid as a solid whose atoms lack a specified order, we can confirm that the second option which states that "Atoms in the hair gel having no particular order or pattern" is correct.
To learn more about Atoms visit:
brainly.com/question/13981855?referrer=searchResults
Which grade would u like to begin with? I can probably help with grade 9 Intro to Chemistry and Grade 10 Naming elements and compounds. That's all
Answer:
Non-zero digits are always significant.
Any zeros between two significant digits are significant.
A final zero or trailing zeros in the decimal portion ONLY are significant. If a number ends in zeros to the right of the decimal point, those zeros are significant.
Explanation:
1.138 has 4 significant figures, which are 1, 1, 3 and 8. The numbers after the decimal point are decimals and are significant figures.
Ka and Kb values of weak acids and weak bases are small.
This is because weak acids and weak bases do not dissociate completely, favoring the reactants more than dissociating into the product of H+ or OH-.