You have to use the molar volume of gas which is 22.4L/mol at STP. To find the number of moles of from a given volume of gas at STP, you need to divide the given volume by 22.4L/mol.
44.4L/22.4L/mol=1.98mol of gas
Answer:
5:59
Dot structures II: Multiple bonds (video)
Explanation:
try this video! hope it helps!
Answer:
3S₈ + 28Br₂ => 8S₃Br₇
Explanation:
Start with either sulfur (S) or bromine (Br) and balance ...
3S₈ + Br₂ => 8S₃Br₇ or S₈ + 7/2Br₂ => S₃Br₇
Balance the remaining reactant ...
3S₈ + 56/2Br₂ => 8S₃Br₇
Remove fractions by multiplying by the fraction's denominator
2(3S₈ + 56/2Br₂ => 8S₃Br₇) => 6S₈ + 56Br₂ => 16S₃Br₇
Reduce to smallest whole number ratio => standard equation at STP ...
3S₈ + 28Br₂ => 8S₃Br₇
Answer:
There is 17,114825 g of powdered drink mix needed
Explanation:
Step 1 : Calculate moles
As given, the concentration of the drink is 0.5 M, this means 0.5 mol / L
Since the volume is 100mL, we have to convert the concentration,
⇒0.5 / 1 = x /0.1 ⇒ 0.5* 0.1 = x = 0.05 M
This means there is 0.05 mol per 100mL
e
Step 2 : calculate mass of the powdered drink
here we use the formula n (mole) = m(mass) / M (Molar mass)
⇒ since powdered drink mix is usually made of sucrose (C12H22O11) and has a molar mass of 342.2965 g/mol.
0.05 mol = mass / 342.2965 g/mol
To find the mass, we isolate it ⇒0.05 mol * 342.2965 g/mol = 17,114825g
There is 17,114825 g of powdered drink mix needed
Answer:
What is
the volume of the balloon when the temperature is 310K?