Step-by-step explanation:
<em>Here, slope of the line (m) = 1</em>
<em>Here, slope of the line (m) = 1And, the line passes through the point (7,9)</em>
<em>Equation </em><em>of </em><em>the </em><em>line </em><em>is </em><em>given </em><em>by </em>
<em>y </em><em>-</em><em> </em><em>y1</em><em> </em><em>=</em><em> </em><em>m </em><em>(</em><em> </em><em>x </em><em>-</em><em> </em><em>x</em><em>1</em><em> </em><em>)</em>
<em>y </em><em>-</em><em> </em><em>9</em><em> </em><em>=</em><em> </em><em>1</em><em>(</em><em> </em><em>x </em><em>-</em><em> </em><em>7</em><em>)</em>
<em>y </em><em>-</em><em> </em><em>9</em><em> </em><em>=</em><em> </em><em>x </em><em>-</em><em>7</em>
<em>x </em><em>-</em><em>7</em><em>+</em><em>9</em><em>-</em><em>y</em><em> </em><em>=</em><em> </em><em>0</em>
<em>x </em><em>-</em><em> </em><em>y </em><em>+</em><em> </em><em>2</em><em> </em><em>=</em><em> </em><em>0</em><em> </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>is </em><em>the </em><em>required </em><em>equation </em><em>of </em><em>the </em><em>line. </em>
Answer:
{-2, -1 , 3}
Step-by-step explanation:
When we have a set like:
{x₁, x₂, x₃}
The mode is the value that appears the most, so if there is no mode, then each value appears just one time.
The median is the middle value, here we know that the median is -1, then we can rewrite the set as:
{x₁, -1 , x₃}
The mean is computed as:
Mean = (x₁ + x₂ + x₃)/3
in this case we know that the mean is 0, then:
0 = (x₁ + x₂ + x₃)/3
then the numerator must be zero, so:
0 = (x₁ + x₂ + x₃)
replacing the value of x₂ = -1 we get:
0 = (x₁ - 1 + x₃)
where:
-5 < x₁ < -1 < x₃ ≤ 3
Now we can select the values of x₁ and x₃ such that the sum is equal to zero, and it meets the wanted restrictions.
here we can choose x₃ to be equal to 3 (the maximum allowed value), I do this because I noticed that the other values that are larger than -1 will not work (just with quick math).
then:
0 = x₁ - 1 + 3
Now we can solve this for x₁
0 = x₁ + 2
-2 = x₁
Then the set is:
{-2, -1 , 3}
Since the average height is 60 inches and its deviation is 2 inches, one deviation to the right (or higher) is 62 inches (60 + 2). Two deviations is 64 inches, three deviations is 66 inches, and four deviations is 68 inches.
Since the average weight is 100 pounds and its deviation is 5 inches, we repeat the process from finding heights to get to 115 pounds. That takes three deviations.
The MORE deviations away, the more unusual it is. So the height (4 deviations) is more unusual than the weight (3 deviations).
Answer:
She has 6 1/3. The larger dress need 3 2/3. So 6 1/3 - 3 2/3 = 2 2/3
So Mrs. Rodriguez will need 2 2/3 for the smaller dress
Step-by-step explanation: