Answer:
Step-by-step explanation:
drain empties 1/10 of the desired amount per minute
pump fills 1/14 of the desired amount per minute
when both are active, the net drain is 1/10-1/14 = 1/35 of the desired amount per minute
It takes 35 minutes to reach the cut-off level.
Answer:
16
Step-by-step explanation:
Apply PEMDAS:
Solve the exponent, multiply from left to right, and then subtract and add from left to right.
Answer:
c
Step-by-step explanation:
252 = 7 *36
36 = 6 *6 = 6²
a² -b² = (a + b)(a - b)
7h² - 252k² = 7(h² - 36k²)
= 7(h² - [6k]² )
= 7(h +6k)(h - 6k)
Answer:
1 / (3 - √x³)
Step-by-step explanation:
∛x = x^1/3
^1/3 means the exponent is 1/3
then the derivative is:
d/dx ∛x = d/dx x~1/3 = 1/3*x~(1/3 - 1) = 1/3 x~-2/3 = 1/3 * (1/√x³)
= 1 / (3*√x³)
Hope it helps.
Answer:
Width = 2x²
Length = 7x² + 3
Step-by-step explanation:
∵ The area of a rectangle is
∵ Its width is the greatest common monomial factor of and 6x²
- Let us find the greatest common factor of 14 , 6 and , x²
∵ The factors of 14 are 1, 2, 7, 14
∵ The factors of 6 are 1, 2, 3, 6
∵ The common factors of 14 and 6 are 1, 2
∵ The greatest one is 2
∴ The greatest common factor of 14 and 6 is 2
- The greatest common factor of monomials is the variable with
the smallest power
∴ The greatest common factor of and x² is x²
∴ The greatest common monomial factor of and 6x² is 2x²
∴ The width of the rectangle is 2x²
To find the length divide the area by the width
∵ The area =
∵ The width = 2x²
∴ The length = ( ) ÷ (2x²)
∵ ÷ 2x² = 7x²
∵ 6x² ÷ 2x² = 3
∴ ( ) ÷ (2x²) = 7x² + 3
∴ The length of the rectangle is 7x² + 3