The smallest positive integer that the intermediate value theorem guarantees a zero exists between 0 and a is 3.
What is the intermediate value theorem?
Intermediate value theorem is theorem about all possible y-value in between two known y-value.
x-intercepts
-x^2 + x + 2 = 0
x^2 - x - 2 = 0
(x + 1)(x - 2) = 0
x = -1, x = 2
y intercepts
f(0) = -x^2 + x + 2
f(0) = -0^2 + 0 + 2
f(0) = 2
(Graph attached)
From the graph we know the smallest positive integer value that the intermediate value theorem guarantees a zero exists between 0 and a is 3
For proof, the zero exists when x = 2 and f(3) = -4 < 0 and f(0) = 2 > 0.
<em>Your question is not complete, but most probably your full questions was</em>
<em>Given the polynomial f(x)=− x 2 +x+2 , what is the smallest positive integer a such that the Intermediate Value Theorem guarantees a zero exists between 0 and a ?</em>
Thus, the smallest positive integer that the intermediate value theorem guarantees a zero exists between 0 and a is 3.
Learn more about intermediate value theorem here:
brainly.com/question/28048895
#SPJ4
Answer:
24 miles UwU
Step-by-step explanation: G'day mate!
Since we are decreasing by 40%
The new value would be 100% - 40% = 60% of the value
New value = 60% of 800
= (60 / 100) * 800 = 480
Am giving you 480 as the answer.
Answer:
Step-by-step explanation:
Data given and notation
represent the sample mean
represent the sample standard deviation
sample size
represent the value that we want to test
represent the significance level for the hypothesis test.
t would represent the statistic (variable of interest)
represent the p value for the test (variable of interest)
State the null and alternative hypotheses.
We need to conduct a hypothesis in order to check if the true mean is different from 7.1 ppm, the system of hypothesis would be:
Null hypothesis:
Alternative hypothesis:
If we analyze the size for the sample is < 30 and we don't know the population deviation so is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:
(1)
t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".
Calculate the statistic
We can replace in formula (1) the info given like this: