![\bf 2[x^2+y^2]^2=25(x^2-y^2)\qquad \qquad \begin{array}{lllll} &x_1&y_1\\ % (a,b) &({{ 3}}\quad ,&{{ 1}})\quad \end{array}\\\\ -----------------------------\\\\ 2\left[ x^4+2x^2y^2+y^4 \right]=25(x^2-y^2)\qquad thus \\\\\\ 2\left[ 4x^3+2\left[ 2xy^2+x^22y\frac{dy}{dx} \right]+4y^3\frac{dy}{dx} \right]=25\left[2x-2y\frac{dy}{dx} \right] \\\\\\ 2\left[ 4x^3+2\left[ 2xy^2+x^22y\frac{dy}{dx} \right]+4y^3\frac{dy}{dx} \right]=50\left[x-y\frac{dy}{dx} \right] \\\\\\ ](https://tex.z-dn.net/?f=%5Cbf%202%5Bx%5E2%2By%5E2%5D%5E2%3D25%28x%5E2-y%5E2%29%5Cqquad%20%5Cqquad%20%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%5C%5C%0A%25%20%20%20%28a%2Cb%29%0A%26%28%7B%7B%203%7D%7D%5Cquad%20%2C%26%7B%7B%201%7D%7D%29%5Cquad%20%0A%5Cend%7Barray%7D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0A2%5Cleft%5B%20x%5E4%2B2x%5E2y%5E2%2By%5E4%20%5Cright%5D%3D25%28x%5E2-y%5E2%29%5Cqquad%20thus%0A%5C%5C%5C%5C%5C%5C%0A2%5Cleft%5B%204x%5E3%2B2%5Cleft%5B%202xy%5E2%2Bx%5E22y%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%2B4y%5E3%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%3D25%5Cleft%5B2x-2y%5Cfrac%7Bdy%7D%7Bdx%7D%20%20%5Cright%5D%0A%5C%5C%5C%5C%5C%5C%0A2%5Cleft%5B%204x%5E3%2B2%5Cleft%5B%202xy%5E2%2Bx%5E22y%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%2B4y%5E3%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%3D50%5Cleft%5Bx-y%5Cfrac%7Bdy%7D%7Bdx%7D%20%20%5Cright%5D%0A%5C%5C%5C%5C%5C%5C%0A)
![\bf \left[ 4x^3+2\left[ 2xy^2+x^22y\frac{dy}{dx} \right]+4y^3\frac{dy}{dx} \right]=25\left[x-y\frac{dy}{dx} \right] \\\\\\ 4x^3+4xy^2+4x^2y\frac{dy}{dx}+4y^3\frac{dy}{dx}+25y\frac{dy}{dx}=25x \\\\\\ \cfrac{dy}{dx}[4x^2y+4y^3+25y]=25x-4x^3+4xy^2 \\\\\\ \cfrac{dy}{dx}=\cfrac{25x-4x^3+4xy^2}{4x^2y+4y^3+25y}\impliedby m=slope](https://tex.z-dn.net/?f=%5Cbf%20%5Cleft%5B%204x%5E3%2B2%5Cleft%5B%202xy%5E2%2Bx%5E22y%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%2B4y%5E3%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%3D25%5Cleft%5Bx-y%5Cfrac%7Bdy%7D%7Bdx%7D%20%20%5Cright%5D%0A%5C%5C%5C%5C%5C%5C%0A4x%5E3%2B4xy%5E2%2B4x%5E2y%5Cfrac%7Bdy%7D%7Bdx%7D%2B4y%5E3%5Cfrac%7Bdy%7D%7Bdx%7D%2B25y%5Cfrac%7Bdy%7D%7Bdx%7D%3D25x%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%5B4x%5E2y%2B4y%5E3%2B25y%5D%3D25x-4x%5E3%2B4xy%5E2%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3D%5Ccfrac%7B25x-4x%5E3%2B4xy%5E2%7D%7B4x%5E2y%2B4y%5E3%2B25y%7D%5Cimpliedby%20m%3Dslope)
notice... a derivative is just the function for the slope
now, you're given the point 3,1, namely x = 3 and y = 1
to find the "m" or slope, use that derivative, namely

that'd give you a value for the slope
to get the tangent line at that point, simply plug in the provided values
in the point-slope form

and then you solve it for "y", I gather you don't have to, but that'd be the equation of the tangent line at 3,1
Answer is 26094858.
Have a great day/night :)
Answer:
ochenta y ocho mil trescientos diecisiete
Step-by-step explanation:
eighty-eight thousand three hundred seventeen
Answer:
Either x = 3, y = 2
or
(3,2) is your answer.
Step-by-step explanation:
2x +y = 8 (1)
y = - x+ 5 (2)
Put equation (2) into equation (1). Use the y value in (2) to go into the y value in (1).
2x - x+5 = 8 Combine the x values
x + 5 = 8 Subtract 5 from both sides
x + 5-5 = 8-5
x=3
Now go back to (2). Put x in for the value of -x. Watch the sign.
y = -3+ 5
y = 2
So the answer is (3,2)
Answer: the answer is 3.6 mph
Step-by-step explanation: to find the average speed you need to divide your total distance by total time. Im this case you need to divide 12 by to find the average speed you need to divide your total distance by total time. Im this case you need to divide 12 by 3.25