Answer:
1. distance = sqrt( (7-7)^2+(2- -8)^2) = 10
2. check out desk (0,0 ) => distance = sqrt( (0- -9)^2+(0-0)^2) = 9
3. last corner ( -3, 4)
4. area = sqrt( (-10- -10)^2+(10-4)^2) x sqrt( (-3- -10)^2+(10-10)^2) = 6x7 =42
5. check desk (0,0), south direction = negative y axis => P_beginning (0,-20), P_end (0,-(20+25)) = (0,-45)
6. A(-2,-1) and B(4,-1) lie in y =-1. AB = sqrt( (-2- 4)^2+(-1- -1)^2) =6
=> area = 3.6x6 =21.6
=> peri = 2x(3.6+6) = 19.2
7. A(-5,4) and B(2,4), AB = sqrt( (-5- 2)^2+(4- -4)^2) = 7 => AB is base
=> p = peri = 7+ 8.3x2 = 23.6
=> area = sqrt[px(p-7)x(p-8.3)x(p-8.3)]
=sqrt[23.6x(23.6-7)x(23.6-8.3)x(23.6-8.3)] = 302.8
Let's to the first example:
f(x) = x^2 + 9x + 20
Ussing the formula of basckara
a = 1
b = 9
c = 20
Delta = b^2 - 4ac
Delta = 9^2 - 4.(1).(20)
Delta = 81 - 80
Delta = 1
x = [ -b +/- √(Delta) ]/2a
Replacing the data:
x = [ -9 +/- √1 ]/2
x' = (-9 -1)/2 <=> - 5
Or
x" = (-9+1)/2 <=> - 4
_______________
Already the second example:
f(x) = x^2 -4x -60
Ussing the formula of basckara again
a = 1
b = -4
c = -60
Delta = b^2 -4ac
Delta = (-4)^2 -4.(1).(-60)
Delta = 16 + 240
Delta = 256
Then, following:
x = [ -b +/- √(Delta)]/2a
Replacing the information
x = [ -(-4) +/- √256 ]/2
x = [ 4 +/- 16]/2
x' = (4-16)/2 <=> -6
Or
x" = (4+16)/2 <=> 10
______________
Now we are going to the 3 example
x^2 + 24 = 14x
Isolating 14x , but changing the sinal positive to negative
x^2 - 14x + 24 = 0
Now we can to apply the formula of basckara
a = 1
b = -14
c = 24
Delta = b^2 -4ac
Delta = (-14)^2 -4.(1).(24)
Delta = 196 - 96
Delta = 100
Then we stayed with:
x = [ -b +/- √Delta ]/2a
x = [ -(-14) +/- √100 ]/2
We wiil have two possibilities
x' = ( 14 -10)/2 <=> 2
Or
x" = (14 +10)/2 <=> 12
________________
To the last example will be the same thing.
f(x) = x^2 - x -72
a = 1
b = -1
c = -72
Delta = b^2 -4ac
Delta = (-1)^2 -4(1).(-72)
Delta = 1 + 288
Delta = 289
Then we are going to stay:
x = [ -b +/- √Delta]/2a
x = [ -(-1) +/- √289]/2
x = ( 1 +/- 17)/2
We will have two roots
That's :
x = (1 - 17)/2 <=> -8
Or
x = (1+17)/2 <=> 9
Well, this would be your answers.
Answer:
Option C. 10 square inch
Step-by-step explanation:
Net of a prism is shown on the coordinate plane. We have to calculate the surface area of the prism.
To calculate the surface area of the net we will calculate the area of the four large rectangles and two squares given in the picture.
Total surface area of the net = 2× small squares + 4×large rectangles
= 2×(1×1) + 4×(1×2) = 2 + 8 = 10 square inch.
Therefore option C. 10 square inch is the answer.
Answer:
x = 115
Step-by-step explanation:
x = 115 because of alternate exterior angles