Answer:
Amplitude = 8 Volts
Frequency = 0.067 kHz
Explanation:
Note: The missing picture in question is attached for your review.
Given:
Volts/Div = 2 V/div
Time/Div = 5 msec/div
Finding Amplitude:
Now, as you can see in the attached picture, there are 4 division between two peaks of the waveform, so,

(Multiplying by 2 V/div because oscilloscope dial is set at 2 V/div)
Finding Frequency:
As can be seen in attached picture, 3 division are there for one complete cycle of waveform,so,

Since,

A real cubic expansivity is an increase in the volume of a liquid per unit volume per degree rise in temperature when heated in an inexpansible vessel.
Mechanical energy
I think
Answer:
mass of ball 1=m1
mass of ball 2=m2
velocity of ball=r1w1
velocity of ball 2=r2w2
Total angular momentum=m1*v1+m2*v2
but
v1=r1*w1
v2=r2*w2
Substitute values in above equation
Total angular momentum of the system=m1*r1*w1+m2*r2*w2
Answer:
The minimum work per unit heat transfer will be 0.15.
Explanation:
We know the for a heat pump the coefficient of performance (
) is given by

where,
is the magnitude of heat transfer between cyclic device and high-temperature medium at temperature
and
is the required input and is given by
,
being magnitude of heat transfer between cyclic device and low-temperature
. Therefore, from above equation we can write,

Given,
and
. So, the minimum work per unit heat transfer is given by
