Density is mass divided by volume. rho=m/v. So, v=m/rho. In frank's case this is 80/8 = 10 cm^3.
The answer is A. When the forces are weaker, they will not be able to hold the particles of the substances together; therefore, the substance will be observed as being volatile.
Answer:
(a) 490 N on earth
(b) 80 N on earth
(c) 45.4545 kg on earth
(d) 270.27 kg on moon
Explanation:
We have given 1 kg = 9.8 N = 2.2 lbs on earth
And 1 kg = 1.6 N = 0.37 lbs on moon
(a) We have given mass of the person m = 50 kg
As it is given that 1 kg = 9.8 N
So 50 kg = 50×9.8 =490 N
(b) Mass of the person on moon = 50 kg
As it is given that on moon 1 kg = 1.6 N
So 50 kg = 50×1.6 = 80 N
(c) We have given that weight of the person on the earth = 100 lbs
As it is given that 1 kg = 2.2 lbs on earth
So 100 lbs = 45.4545 kg
(d) We have given weight of the person on moon = 100 lbs
As it is given that 1 kg = 0.37 lbs
So 100 lbs 
Answer:
She can swing 1.0 m high.
Explanation:
Hi there!
The mechanical energy of Jane (ME) can be calculated by adding her gravitational potential (PE) plus her kinetic energy (KE).
The kinetic energy is calculated as follows:
KE = 1/2 · m · v²
And the potential energy:
PE = m · g · h
Where:
m = mass of Jane.
v = velocity.
g = acceleration due to gravity (9.8 m/s²).
h = height.
Then:
ME = KE + PE
Initially, Jane is running on the surface on which we assume that the gravitational potential energy of Jane is zero (the height is zero). Then:
ME = KE + PE (PE = 0)
ME = KE
ME = 1/2 · m · (4.5 m/s)²
ME = m · 10.125 m²/s²
When Jane reaches the maximum height, its velocity is zero (all the kinetic energy was converted into potential energy). Then, the mechanical energy will be:
ME = KE + PE (KE = 0)
ME = PE
ME = m · 9.8 m/s² · h
Then, equallizing both expressions of ME and solving for h:
m · 10.125 m²/s² = m · 9.8 m/s² · h
10.125 m²/s² / 9.8 m/s² = h
h = 1.0 m
She can swing 1.0 m high (if we neglect dissipative forces such as air resistance).