Answer:
The correct answer is - A matter that has an ordered arrangement of atoms, molecules, or ions.
Explanation:
In physics, a crystal is a type of solid matter in which a highly arranged molecule or atoms present to form a lattice that extended in all directions. It is a lightweight clear solid which is normally is colorless.
It can be cubic, hexagonal, triclinic, monoclinic, orthorhombic, tetragonal, and trigonal that are ordered arrangments. Its internal symmetry is visible to its surface.
We can solve the problem by using Newton's second law of motion:

where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object
In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:

The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>
B) 1.4 m/s2 horizontally.</span>
Answer:
Explanation:
I is the moment of inertia of the pulley, α is the angular acceleration of the pulley and T is the tension in the rope. Let a is the linear acceleration.
The relation between the linear acceleration and the angular acceleration is
a = R α .... (1)
According to the diagram,
T x R = I x α
T x R = I x a / R from equation (1)
T = I x a / R² .... (2)
mg - T = ma .... (3)
Substitute the value of T from equation (2) in equation (3)


T is the acceleration in the system
Substitute the value of a in equation (2)


This is the tension in the string.
The scientist is likely to be studying kinematics.
Kinematics is the branch of science, specifically physics, which is concerned with the motion of objects without reference to the forces that induce this motion. An example of kinematics is studying the change in velocity of an object over time or the distance covered by an object in a specified amount of time.
Answer:
a) t = 2.0 s, b) x_f = - 24.56 m, Δx = 16.56 m
Explanation:
This is an exercise in kinematics, the relationship of position and time is indicated
x = 5 t³ - 9t² -24 t - 8
a) ask when the velocity is zero
speed is defined by
v =
let's perform the derivative
v = 15 t² - 18t - 24
0 = 15 t² - 18t - 24
let's solve the quadratic equation
t =
t1 = -0.8 s
t2 = 2.0 s
the time has to be positive therefore the correct answer is t = 2.0 s
b) the position and distance traveled for a = 0
acceleration is defined by
a = dv / dt
a = 30 t - 18
a = 0
30 t = 18
t = 18/30
t = 0.6 s
we substitute this time in the expression of the position
x = 5 0.6³ - 9 0.6² - 24 0.6 - 8
x = 1.08 - 3.24 - 14.4 - 8
x = -24.56 m
we see that all the movement is in one dimension so the distance traveled is the change in position between t = 0 and t = 0.6 s
the position for t = 0
x₀ = -8 m
the position for t = 0.6 s
x_f = - 24.56 m
the distance
ΔX = x_f - x₀
Δx = | -24.56 -(-8) |
Δx = 16.56 m