Answer:
False
Explanation:
As I like to think of it, equilibrium will shift either 'forwards' (to increase products) or 'backwards' (to increase reactants) to oppose any change in system;
If heat is added, the equilibrium will shift in the direction that reduces heat within the system;
In other words, it will shift in favour of the endothermic reaction, i.e. the reaction where heat is gained by the molecules/atoms and therefore taken out from the system;
If the 'forwards' reaction, producing NH₃, is exothermic (i.e. energy is released in the reaction), then the 'backwards' reaction is endothermic;
So the equilibrium will shift in this direction, which is the reaction of 2 NH₃ molecules producing N₂ and 3 H₂
Answer:
16.89g of PbBr2
Explanation:
First, let us calculate the number of mole of Pb(NO3)2. This is illustrated below:
Molarity of Pb(NO3)2 = 0.595M
Volume = 77mL = 77/1000 = 0.077L
Mole =?
Molarity = mole/Volume
Mole = Molarity x Volume
Mole of Pb(NO3)2 = 0.595x0.077
Mole of Pb(NO3)2 = 0.046mol
Convert 0.046mol of Pb(NO3)2 to grams as shown below:
Molar Mass of Pb(NO3)2 =
207 + 2[ 14 + (16x3)]
= 207 + 2[14 + 48]
= 207 + 2[62] = 207 +124 = 331g/mol
Mass of Pb(NO3)2 = number of mole x molar Mass = 0.046 x 331 = 15.23g
Molar Mass of PbBr2 = 207 + (2x80) = 207 + 160 = 367g/mol
Equation for the reaction is given below:
Pb(NO3)2 + CuBr2 —> PbBr2 + Cu(NO3)2
From the equation above,
331g of Pb(NO3)2 precipitated 367g of PbBr2
Therefore, 15.23g of Pb(NO3)2 will precipitate = (15.23x367)/331 = 16.89g of PbBr2
Answer:
mass O2 = 222.5 g
Explanation:
- %wt = ((mass compound)/(mass sln))×100
balance reaction:
∴ %wt H2 = 11 % = ((mass H2)/(mass H2O))×100
∴ %wt O2 = 89 % = ((mass O2)/(mass H2O))×100
∴ mass H2O 250 g
⇒ mass O2 = (0.89)(250 g)
⇒ mass O2 = 222.5 g
Answer:
0.090 J/(mmol·°C) × (1000 mmol/mole × 1 kJ/(1000 J)) = 0.090 kJ/mole
Explanation:
The unit of conversion from kilo-Joules to Joules is given as follows;
1000 Joules = 1 kilo-Joule
The unit of conversion from milimoles to moles is given as follows;
1000 milimoles = 1 Mole
Therefore, we have
The value of the given expression is 0.090 J/(mmol·°C) × 1000 mmol/mole × 1 kJ/(1000 J) = 0.090 kJ/mole
0.090 J/milimole = 0.09 kJ/mole.
Answer: Atmosphere - Atmosphere - Troposphere: The lowest portion of the atmosphere is the troposphere, a layer where temperature generally decreases with height. This layer contains most of Earth’s clouds and is the location where weather primarily occurs. The lower levels of the troposphere are usually strongly influenced by Earth’s surface.
Explanation: