Answer:

Explanation:
First, we need to find the molecular mass of water (H₂O).
H₂O has:
- 2 Hydrogen atoms (subscript of 2)
- 1 Oxygen atom (implied subscript of 1)
Use the Periodic Table to find the mass of hydrogen and oxygen. Then, multiply by the number of atoms of the element.
- Hydrogen: 1.0079 g/mol
- Oxygen: 15.9994 g/mol
There are 2 hydrogen atoms, so multiply the mass by 2.
- 2 Hydrogen: (1.0079 g/mol)(2)= 2.0158 g/mol
Now, find the mass of H₂O. Add the mass of 2 hydrogen atoms and 1 oxygen atom.
- 2.0158 g/mol + 15.9994 g/mol = 18.0152 g/mol
Next, find the amount of moles using the molecular mass we just calculated. Set up a ratio.

Multiply. The grams of H₂O will cancel out.



The original measurement given had two significant figures (3,2). We must round to have 2 significant figures. All the zeroes before the 1 are not significant. So, round to the ten thousandth.
The 7 in the hundred thousandth place tells us to round up.

There are about <u>0.0018 moles in 0.032 grams.</u>
Answer:
Yes, water can stay liquid below zero degrees Celsius. There are a few ways in which this can happen. The freezing point of water drops below zero degrees Celsius as you apply pressure. When we apply pressure to a liquid, we force the molecules to get closer together.
Explanation:
Hope this helps you. Have a nice day.^_^
Please mark as brainliest. It helps a lot:)
Answer:

Explanation:
Hello,
In this case, given the described concept regarding the Avogadro's number, we can easily notice that 27.0 g of aluminium foil has 6.022x10²³ atoms as shown below based on the mass-mole-particles relationship:

Notice this is backed up by the fact that aluminium molar mass if 27.0 g/mol.
Best regards.
Answer : The mass of nitric acid is, 214.234 grams.
Solution : Given,
Moles of nitric acid = 3.4 moles
Molar mass of nitric acid = 63.01 g/mole
Formula used :

Now put all the given values in this formula, we get the mass of nitric acid.

Therefore, the mass of nitric acid is, 214.234 grams.
Answer:
Be yourself, be kind, cute, funny, and yeah
Explanation: