Answer:
The resulting pressure is 2.81 atm
Explanation:
According to Dalton's Law of Partial Pressure, each of the gases (A and B) will exert their pressure independently. If we use Boyle's Law to calculate the pressure of each of the gases separately we have:
Pressure of gas A:
p1V1 = p2V2
p1 = 2.4 atm
V1 = 722 mL
V2 = 722 + 169 = 891 mL
p2 =?
Clearing p2:
p2 = (p1V1)/V2 = (2.4*722)/891 = 1.94 atm
Pressure of gas B:
p1 = 4.6 atm
V1 = 169 mL
V2 = 169+722 = 891 mL
p2=?
Clearing p:
p2 = (4.6*169)/891 = 0.87 atm
Dalton's expression for total partial pressures is equal to:
ptotal = pA + pB = 1.94+0.87 = 2.81 atm
Answer: Charles's law, Avogadro's law and Boyle's law.
Justification:
Boyle's law states that at constant temperature PV = constant
Charles law states that at constant pressure V/T = constant
Avogadro's law states that at constant pressure ant temperature, equal volume of gases contain equal number of moles: V/n = constant
Ideal gas law states PV/nT = constant => PV = nT*constant = PV = nTR
Answer:
pH = 1.32
Explanation:
H₂M + KOH ------------------------ HM⁻ + H₂O + K⁺
This problem involves a weak diprotic acid which we can solve by realizing they amount to buffer solutions. In the first deprotonation if all the acid is not consumed we will have an equilibrium of a wak acid and its weak conjugate base. Lets see:
So first calculate the moles reacted and produced:
n H₂M = 0.864 g/mol x 1 mol/ 116.072 g = 0.074 mol H₂M
54 mL x 1L / 1000 mL x 0. 0.276 moles/L = 0.015 mol KOH
it is clear that the maleic acid will not be completely consumed, hence treat it as an equilibrium problem of a buffer solution.
moles H₂M left = 0.074 - 0.015 = 0.059
moles HM⁻ produced = 0.015
Using the Henderson - Hasselbach equation to solve for pH:
ph = pKₐ + log ( HM⁻/ HA) = 1.92 + log ( 0.015 / 0.059) = 1.325
Notes: In the HH equation we used the moles of the species since the volume is the same and they will cancel out in the quotient.
For polyprotic acids the second or third deprotonation contribution to the pH when there is still unreacted acid ( Maleic in this case) unreacted.
Answer:
31.67 mph
Explanation:
To calculate the average speed of the truck, we must first obtain the total distance travelled by the truck followed by the total time taken for the truck to cover the distance travelled.
The following data were obtained from the question include:
Total distance) = 30 + 45 + 50 + 65 = 190 miles
Total time = 1 + 2 +1 +2 = 6 hours
Average speed =.?
Average speed = Total distance / Total time
Average speed = 190 /6
Average speed = 31.67 mph
Therefore, the average speed of the truck is 31.67 mph
Answer:i believe you are to decompose the formula (i think)