Answer:
a) the charge of an electron is equivalent to the magnitude of the elementary charge but barring a negative sign since the side of the elementary charge is roughly 1.602 * 10 - 19 Columbus then the charge of the electronic is-1.602 * 10 - 19
b) b=2T on the electron moving in the magnetic field
Answer: The infra red waves is located between microwave and visible light based on their WAVELENGTH and FREQUENCY of occurrence.
Explanation:
Electromagnetic waves are those waves that do not require or need a material medium for its propagation, but they are able to travel through a vacuum. They exhibit or show all properties associated or connected with light. They are undeflected in electric and magnetic fields. These electromagnetic waves are arranged in order of their FREQUENCY and WAVELENGTHS which is known as ELECTROMAGNETIC SPECTRUM.
FREQUENCY is defined as the number of cycles which the wave completes in one second and is measured in Hertz(Hz). While WAVELENGTH is defined as the distance between two successive crests or troughs of waves which is measured in meter (m).
The electromagnetic spectrum is made up of the following rays which is arranged from the biggest wavelengths to the smallest:
--> Radiowaves
--> microwave :
--> infrared rays:
--> visible light:
--> ultraviolet rays
--> x-rays and
--> Gamma rays.
According to the arrangement of the spectrum above, the microwave has a higher wavelength and frequency than the infrared rays, while the visible light has a lower wavelength and frequency than the infrared rays.
Answer:
The voltage drop across the bulb is 115 V
Explanation:
The voltage drop equation is given by:

Where:
ΔW is the total work done (4.6kJ)
Δq is the total charge
We need to use the definition of electric current to find Δq

Where:
I is the current (2 A)
Δt is the time (20 s)


Then, we can put this value of charge in the voltage equation.

Therefore, the voltage drop across the bulb is 115 V.
I hope it helps you!
His total displacement from his original position is -1 m
We know that total displacement of an object from a position x to a position x', d = final position - initial position.
d = x' - x
If we assume the lad's initial position in front of her house is x = 0 m. The lad then moves towards the positive x-axis, 5 m. He then ends up at x' = 5 m. He then finally goes back 6 m.
Since displacement = final position - initial position, and his displacement is d' = -6 m (since he moves in the negative x - direction or moves back) from his initial position of x' = 5 m.
His final position, x" after moving back 6 m is gotten from
x" - x' = -6 m
x" = -6 + x'
x" = -6 + 5
x" = -1 m
Thus, his total displacement from his original position is
d = final position - initial position
d = x" - x
d = -1 m - 0 m
d = -1 m
So, his total displacement from his original position is -1 m
Learn more about displacement here:
brainly.com/question/17587058