Answer:
kftisgkstisirstizurzursrus
Answer:
Explanation:
The frequency is 16.0 Hz. That means that 16 of these waves can pass a single point in 1 second. We are given frequency and wavelength. The equation that relates them is
where f is frequency, v is velocity, and λ is wavelength. Putting all this together:
and solving for velocity,
v = 16.0(97.5) so
v = 1560 m/s. This wave can travel 1560 meters in a single second!!! Now that we know this velocity, we can use it in a proportion to find our unknown, which is how long, t, it will take to hear this sound 11000m away. (11 km is 11000m):
and cross multiply to get
1560t = 11000 so
t = 7.1 seconds
Answer:
v_max = (1/6)e^-1 a
Explanation:
You have the following equation for the instantaneous speed of a particle:
(1)
To find the expression for the maximum speed in terms of the acceleration "a", you first derivative v(t) respect to time t:
(2)
where you have use the derivative of a product.
Next, you equal the expression (2) to zero in order to calculate t:
![a[(1)e^{-6t}-6te^{-6t}]=0\\\\1-6t=0\\\\t=\frac{1}{6}](https://tex.z-dn.net/?f=a%5B%281%29e%5E%7B-6t%7D-6te%5E%7B-6t%7D%5D%3D0%5C%5C%5C%5C1-6t%3D0%5C%5C%5C%5Ct%3D%5Cfrac%7B1%7D%7B6%7D)
For t = 1/6 you obtain the maximum speed.
Then, you replace that value of t in the expression (1):

hence, the maximum speed is v_max = ((1/6)e^-1)a
<span>They would feel that the water is cold.
</span> The atmosphere is heated both by the Sun and by the Earth's surface. Water radiates heat differently than land, so the air temperature over the ocean is usually different than the air temperature over land. <span>
The difference in air temperature over land compared to over water causes convection currents in the atmosphere. How would a person at the beach experience these convection currents?
</span>They would feel that the water is cold.
NOT:
They would feel the heat of the Sun.
They would feel that the sand is hot.
<span>They would feel wind as the air moves.</span>
No place in the river is characterized like this