Answer:
1. Largest force: C; smallest force: B; 2. ratio = 9:1
Explanation:
The formula for the force exerted between two charges is
where K is the Coulomb constant.
q₁ and q₂ are also identical and constant, so Kq₁q₂ is also constant.
For simplicity, let's combine Kq₁q₂ into a single constant, k.
Then, we can write
1. Net force on each particle
Let's
- Call the distance between adjacent charges d.
- Remember that like charges repel and unlike charges attract.
Define forces exerted to the right as positive and those to the left as negative.
(a) Force on A
(b) Force on B
(C) Force on C
(d) Force on D
(e) Relative net forces
In comparing net forces, we are interested in their magnitude, not their direction (sign), so we use their absolute values.
2. Ratio of largest force to smallest
Answer:
The work and heat transfer for this process is = 270.588 kJ
Explanation:
Take properties of air from an ideal gas table. R = 0.287 kJ/kg-k
The Pressure-Volume relation is <em>PV</em> = <em>C</em>
<em>T = C </em> for isothermal process
Calculating for the work done in isothermal process
<em>W</em> = <em>P</em>₁<em>V</em>₁
= <em>mRT</em>₁ [∵<em>pV</em> = <em>mRT</em>]
= (5) (0.287) (272.039)
= 270.588 kJ
Since the process is isothermal, Internal energy change is zero
Δ<em>U</em> =
From 1st law of thermodynamics
Q = Δ<em>U </em>+ <em>W</em>
= 0 + 270.588
= 270.588 kJ
Explanation:
Formula to determine the critical crack is as follows.
= 1, = 24.1
[/tex]\sigma_{y}[/tex] = 570
and,
= 427.5
Hence, we will calculate the critical crack length as follows.
a =
=
=
Therefore, largest size is as follows.
Largest size = 2a
=
=
Thus, we can conclude that the critical crack length for a through crack contained within the given plate is .
Answer:
exothermic change hope it help
Gravitation, gravity won't work, it has to be gravitation