1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goblinko [34]
2 years ago
14

una compañia de relojes desea promocionar un cierto modelo de reloj de pared con motivo de su proximo aniversario. Ellos te soli

citan que diseñes una caratula para reloj, como la que se indica en la figura. el diametro de la caratula es de 20 cm. el radio de las circunferencias, coon los horarios 12, 3, 6 y 9 es de 4cm. el radio de la circunferencia que contiene el resto de los horarios es de 14cm. si dibujas la caratula sobre una cartulina escala natural y tomas como referencia un sistema de coordenadas, cuyo origen coincide con el centro de la caratula. determina las ecuaciones de las circunferencias que la componen
Mathematics
1 answer:
Annette [7]2 years ago
7 0

Queremos encontrar las ecuciones de las circunferencias que definen el reloj dado.

Las ecuaciones son:

x^2 + y^2 = 16cm^2

x^2 + y^2 =  196cm^2

Lo primero que debemos hacer para escribir una ecuacion, es definir nuestro eje de coordenadas.

Pondremos el punto (0, 0) en el centro de la cartulina.

Debemos recordar que la ecuación de un circulo de radio R centrado en el punto (a, b) se escribe como:

(x - a)^2 + (y - b)^2 = R^2

En este caso tendremos dos ecuaciones de circulos, ambas centradas en el centro de la cartulina, que es el punto (0, 0).

Para el primer caso tendremos un radio R = 4cm, que es el circulo interno que contiene las horas 12, 3, 6, y 9.

Otro de radio R' = 14cm, que contiene el resto de horas.

Entonces las dos ecuaciones de los circulos seran:

x^2 + y^2 = (4cm)^2 = 16cm^2

x^2 + y^2 = (14cm)^2 = 196cm^2

Si quieres aprender más. puedes leer.

brainly.com/question/24021353

You might be interested in
A number that has only 2 factors
Anettt [7]
Prime number- a number that has only two factors.
7 0
3 years ago
Read 2 more answers
Prove that $5^{3^n} + 1$ is divisible by $3^{n + 1}$ for all nonnegative integers $n.$
Viktor [21]

When n=0, we have

5^{3^0} + 1 = 5^1 + 1 = 6

3^{0 + 1} = 3^1 = 3

and of course 3 | 6. ("3 divides 6", in case the notation is unfamiliar.)

Suppose this is true for n=k, that

3^{k + 1} \mid 5^{3^k} + 1

Now for n=k+1, we have

5^{3^{k+1}} + 1 = 5^{3^k \times 3} + 1 \\\\ ~~~~~~~~~~~~~ = \left(5^{3^k}\right)^3 + 1^3 \\\\ ~~~~~~~~~~~~~ = \left(5^{3^k} + 1\right) \left(\left(5^{3^k}\right)^2 - 5^{3^k} + 1\right)

so we know the left side is at least divisible by 3^{k+1} by our assumption.

It remains to show that

3 \mid \left(5^{3^k}\right)^2 - 5^{3^k} + 1

which is easily done with Fermat's little theorem. It says

a^p \equiv a \pmod p

where p is prime and a is any integer. Then for any positive integer x,

5^3 \equiv 5 \pmod 3 \implies (5^3)^x \equiv 5^x \pmod 3

Furthermore,

5^{3^k} \equiv 5^{3\times3^{k-1}} \equiv \left(5^{3^{k-1}}\right)^3 \equiv 5^{3^{k-1}} \pmod 3

which goes all the way down to

5^{3^k} \equiv 5 \pmod 3

So, we find that

\left(5^{3^k}\right)^2 - 5^{3^k} + 1 \equiv 5^2 - 5 + 1 \equiv 21 \equiv 0 \pmod3

QED

5 0
1 year ago
The time required to finish a test in normally distributed with a mean of 70 minutes and a standard deviation of 10 minutes. Wha
zalisa [80]
Note that 60 minutes is 1 standard deviation away from the mean and from recalling the 68-95-99.7 rule, the area that will remain is (100 - 68) = 32%. However, we only want the leftmost portion of this area, so the answer is 32%/2 = 16%. 

<span>Choose D.</span>
3 0
3 years ago
Which expression should appear in Line 2?
kipiarov [429]

Answer:

c.

............

..............................

8 0
2 years ago
Given the equation 5 + x - 12 = x- 7.
marusya05 [52]

Answer:

Step-by-step explanation:

5 + x - 12 = x- 7 (Add the 5 and -12 to simplify)

x - 7 = x - 7        (notice its the same on both sides of equal sign. Add 7 to both                    sides)

x = x

solution is all real numbers

Part B

5 - 4 - 12 = -4 - 7

-11 = -11

5 + 0 - 12 = 0 - 7

-7 = -7

5 + 5 - 12 = 5 - 7

-2 = -2

8 0
3 years ago
Other questions:
  • Please solve this problem 5y+30=5()
    13·1 answer
  • What is the estimated value of 50.75 times 0.18
    9·1 answer
  • X(7-x)&gt;8<br><br> A: 8<br> B: 0<br> C: 2<br> D: -1
    13·1 answer
  • Passes through (-4, 2 ) and parallel to y = 1/2x + 5
    7·2 answers
  • Find the value of |-4| - 5 · 2(-1 + 3)
    8·2 answers
  • I NEED HELP ASAP IT'S DUE IN 40 MINUTES!!! I'LL GIVE BRAINLIEST!!!
    10·2 answers
  • one number from 10 to 20 is written on each card select one card randomly what are the probability​
    12·1 answer
  • Solve the inequality m/-4 &lt; 1
    7·1 answer
  • Read the story. Barry is on the school tennis team. At practice yesterday, he did 3 forehand strokes for every 2 backhand stroke
    8·1 answer
  • Plz simplify with steps
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!