Answer: 2
Step-by-step explanation: five times 2 is 10 plus 10 would equal 20
Answer:
The 96% confidence interval for the population proportion of customers satisfied with their new computer is (0.77, 0.83).
Step-by-step explanation:
We have to calculate a 96% confidence interval for the proportion.
We consider the sample size to be the customers that responded the survey (n=800), as we can not assume the answer for the ones that did not answer.
The sample proportion is p=0.8.

The standard error of the proportion is:

The critical z-value for a 96% confidence interval is z=2.054.
The margin of error (MOE) can be calculated as:

Then, the lower and upper bounds of the confidence interval are:

The 96% confidence interval for the population proportion is (0.77, 0.83).
Their slopes would be the same but their positions or points ( if the lines were on a graph) would be different.