Anions are solvated in protic hydrogen-bonding solvents (such as ethanol). Consequently, nucleophiles are less reactive. Since soft nucleophiles are less strongly solvated than hard nucleophiles, these solvents boost the relative reactivity of soft anions.
<h3>
Ethanol is either a nucleophile or a base.</h3>
The ethanol is a base Because carbocation is an extremely reactive species, a base or nucleophile as weak as ethanol can replace or remove it. SN1 and E1 would not be conceivable without the carbocation or a strong departing group.
<h3>How do solvents impact anionic nucleophile's reactivity?</h3>
In polar aprotic solvents, nucleophilic substitution reactions of anionic nucleophiles often proceed more quickly. The normal relative reactivity order in such solvents (like DMSO)is Anions are solvated in protic hydrogen-bonding solvents (such as ethanol). Consequently, nucleophiles are less reactive.
Learn more about nucleophiles here:-
brainly.com/question/27127109
#SPJ4
Answer:
5.158 mol/L
Explanation:
To find the molarity, you need to use the formula:
Molarity (M) = moles / volume (L)
You have been grams sodium carbonate. You need to (1) convert grams Na₂CO₃ to moles (via molar mass), then (2) convert moles Na₂CO₃ to moles HCl (via mole-to-mole ratio from equation), then (3) convert mL to L (by dividing by 1,000), and then (4) use the molarity equation.
<u>Steps 1 - 2:</u>
2 HCl + 1 Na₂CO₃ ----> 2 NaCl + H₂O + CO₂
6.5287 g Na₂CO₃ 1 mole 2 moles HCl
-------------------------- x ------------- x ------------------------- = 0.12318 mole HCl
106 g 1 mole Na₂CO₃
<u>Step 3:</u>
23.88 mL / 1,000 = 0.02388 L
<u>Step 4:</u>
Molarity = moles / volume
Molarity = 0.12318 mole / 0.02388 L
Molarity = 5.158 mole/L
**mole/L is equal to M**
The balanced equation between NaOH and H₂SO₄ is as follows
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of NaOH to H₂SO₄ is 2:1
number of moles of NaOH moles reacted = molarity of NaOH x volume
number of NaOH moles = 0.08964 mol/L x 27.86 x 10⁻³ L = 2.497 x 10⁻³ mol
according to molar ratio of 2:1
2 mol of NaOH reacts with 1 mol of H₂SO₄
therefore 2.497 x 10⁻³ mol of NaOH reacts with - 1/2 x 2.497 x 10⁻³ mol of H₂SO₄
number of moles of H₂SO₄ reacted - 1.249 x 10⁻³ mol
Number of H₂SO₄ moles in 34.53 mL - 1.249 x 10⁻³ mol
number of H₂SO₄ moles in 1000 mL - 1.249 x 10⁻³ mol / 34.53 x 10⁻³ L = 0.03617 mol
molarity of H₂SO₄ is 0.03617 M
"if it is tested in a controlled setting with repeated results" is the statement among the choices given in the question that best describes that can possibly make this scientific claim valid. The correct option among all the options that are given in the question is the first option or option "A". I hope the answer has helped you.<span>
</span>
Fruits and vegetables are in the produce aisle because they are plants, and plants are producers.
Producers are organisms that create energy on their own through various processes depending on the organism.