<span>The correct answer is either Chrome (Chromium), or Aluminum. Unlike steel, these two don't rust easily and can be polished to be quite shiny, especially Chromium, which is why you'll always hear people who like cars talking about chrome wheels and chrome spoilers and things like that. They are not that good for bumpy or roads that are full of holes because they can bend much easier than steel so it can be expensive to maintain.</span>
In the compound iodine heptafluoride: (hints: write out the molecular formula of this compound before answering the question. Also be sure you clearly understand the concepts of charge, oxidation numbers, how to determine charge and oxidation numbers, and - most important of all! - the similarities and the differences between charges and oxidation numbers)
<u>Each fluorine atom has a charge of 1</u>
<h3>What is
iodine heptafluoride?</h3>
The interhalogen compound iodine heptafluoride, often known as iodine(VII) fluoride or iodine fluoride, has the chemical formula IF7. As anticipated by VSEPR theory, it exhibits a unique pentagonal bipyramidal structure. The molecule is capable of undergoing the Bartell process, a pseudorotational rearrangement that is similar to the Berry mechanism but for a heptacoordinated system. It produces colorless crystals that melt at 4.5 °C and have a very narrow liquid range with a boiling point of 4.77 °C. The dense mist has an unpleasant, musty smell. The molecule is symmetrical with D5h. suggestion
To learn more about iodine heptafluoride from the given link:
brainly.com/question/28200374
#SPJ4
Answer:
M = 20.5 g/mol
Explanation:
Given data:
Volume of gas = 1.20 L
Mass of gas = 1.10 g
Temperature and pressure = standard
Solution:
First of all we will calculate the density.
Formula:
d = mass/ volume
d = 1.10 g/ 1.20 L
d = 0.92 g/L
Now we will calculate the molar mass.
d = PM/RT
0.92 g/L = 1 atm × M / 0.0821 atm.L/mol.K ×273.15 K
M = 0.92 g/L × 0.0821 atm.L/mol.K ×273.15 K / 1 atm
M = 20.5 g/mol
Answer:
the molar mass of propane (c3H8) is
12*3+1*8
=36+8=44
Answer:
The answer is quartet 2.40 ppm.
Note: Kindly find an attached image below for the part of the solution to this question
Sources: The image was researched from Course hero platform
Explanation:
Solution
Multiplicity or (n+1) rule:
It helps in determination of multiplicity of an individual proton or individual types of proton which are available in the molecule.
Multiplicity =(n+1)
Thus
The non equivalent protons which are attached from adjacent atom is denoted by n.
Now because there are three non-equivalent protons are present at adjacent carbon of methylene group, hence the multiplicity of methylene hydrogen is given as follows:
The multiplicity will be the same for the two hydrogen's. thus we compute multiplicity only for one hydrogen atom stated below:
Non- equivalent = 3
Multiplicity = (3 +1)
= 4
= Quartet for 2H
A quartet for 2H indicates that the hydrogen atoms attached from the carbon, which is attached one side from a methyl group and the other side form an atom that have no any hydrogens.
Now due +I effect of carbonyl group, chemical shift value is high for these two hydrogens which is exactly at 2.40 ppm or 2.40 Quartet.