<u>Given</u>:
The triangle ABC is a right triangle.
The length of AC = 25, the length of AB = 7 and the length of BC = 24
We need to determine the ratios of sin C, cos C and tan C.
<u>Ratio of sin C:</u>
Using the trigonometric ratio, the ratio of sin C is given by

where
and 
Thus, we get;

Substituting the values, we get;

Thus, the ratio of sin C is 
<u>Ratio of cos C:</u>
The ratio of cos C can be determined using the trigonometric ratio.
Thus, we have;

where
and 

Substituting the values, we get;

Thus, the ratio of cos C is 
<u>Ratio of tan C:</u>
The ratio of tan C can be determined using the trigonometric ratio.
Thus, we have;

where
and 
Thus, we have;

Substituting the values, we get;

Thus, the ratio of tan C is 
Answer:
x=1
Step-by-step explanation:
3x+1=10x-6
3x+7=10x
7=7x
1=x
Csc²x - 1
1/sin²x - 1
1/sin²x - sin²x / sin²x
(1 - sin²x) / sin²x
Recall that sin²x + cos²x = 1
So cos²x = 1 - sin²x
So we can replace numerator to cos²x
cos²x / sin²x
= cot²x
Final answer: cot²x
The first choice: <span>(x + 1)(x + 8)</span>.
1+8=9
1*8=8