Answer:

![[H^+]=5x10^{-13}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D5x10%5E%7B-13%7DM)
![[OH^-]=0.02M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.02M)
Explanation:
Hello there!
In this case, according to the given ionization of magnesium hydroxide, it is possible for us to set up the following reaction:

Thus, since the ionization occurs at an extent of 1/3, we can set up the following relationship:
![\frac{1}{3} =\frac{x}{[Mg(OH)_2]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%7D%20%3D%5Cfrac%7Bx%7D%7B%5BMg%28OH%29_2%5D%7D)
Thus, x for this problem is:
![x=\frac{[Mg(OH)_2]}{3}=\frac{0.03M}{3}\\\\x= 0.01M](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5BMg%28OH%29_2%5D%7D%7B3%7D%3D%5Cfrac%7B0.03M%7D%7B3%7D%5C%5C%5C%5Cx%3D%20%200.01M)
Now, according to an ICE table, we have that:
![[OH^-]=2x=2*0.01M=0.02M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D2x%3D2%2A0.01M%3D0.02M)
Therefore, we can calculate the H^+, pH and pOH now:
![[H^+]=\frac{1x10^{-14}}{0.02}=5x10^{-13}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5Cfrac%7B1x10%5E%7B-14%7D%7D%7B0.02%7D%3D5x10%5E%7B-13%7DM)

Best regards!
Answer: pH of resulting solution will be 13
Explanation:
pH is the measure of acidity or alkalinity of a solution.
Moles of
ion = 
Moles of
ion = 

For neutralization:
1 mole of
ion will react with 1 mole of
ion
0.01 mol of
ion will react with =
of
ion
Thus (0.012-0.01)= 0.002 moles of
are left in 20 ml or 0.02 L of solution.
![[OH^-]=\frac{0.002}{0.02L}=0.1M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%5Cfrac%7B0.002%7D%7B0.02L%7D%3D0.1M)
![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
![pOH=-log[0.1]=1](https://tex.z-dn.net/?f=pOH%3D-log%5B0.1%5D%3D1)


Thus the pH of resulting solution will be 13
A solar cell has a similar function to a leaf.