To calculate atomic mass, you have to take to weighted average of the isotopes' masses. What that means is M = RA*106 + (1 – RA)*104, where RA is relative abundance expressed in decimal form. If you simplify the right side of that equation, you get M = 2*RA + 104. Doing a little more algebra yields RA = (M –104)/2 = (104.4 – 104)/2 = 0.4 / 2 = 0.2, which is 20%. So the answer is B.
Answer:
260.34g
Explanation:
First, you need to know what angelic acid is comprised of. It is written as C₅H₈O₂.
In order to solve for the mass of 2.6 moles of angelic acid, you need the mass of 1 mole of angelic acid. This can be found by adding the masses from the periodic table, like shown below:
5 carbon atoms = (5)(12.01g) = 60.05g
8 hydrogen atoms = (8)(1.01) = 8.08g
2 oxygen atoms = (2)(16) = 32g
angelic acid = 60.05 + 8.08 + 32 = 100.13g
Then, set up a basic stoichiometric equation and solve. The units should cancel out.

Feso3 compound name
Iron(II) Sulfite FeSO3 Molecular Weight
Hope this helps!
Have a great day :)
Ok so, remember that t<span>he average atomic mass is what is seen on the periodic table. It is the average mass of all of the isotopes with their frequency taken into account. What you need to do is add the products of the masses and frequencies Just like this:</span>
<span>0.903*267.8 + 0.097*270.9
When you add it the result is what you are looking for</span>
Answer:
As electric current flows through a wire, it generates a magnetic field in the area surrounding the wire.
Explanation:
hope this helps