Answer:
Hope this helps
Explanation:
Potential energy diagrams represent the energy transfer in chemical reactions in a diagram called a potential energy graph and/or a reaction progress curve. A potential energy diagram shows the adjustment in potential energy of a system as reactants are changed.
____________________________________________________
Answer:
Your answer would be a). 2.0 × 10-9
____________________________________________________
Work:
In your question the "ph" of a 0.55 m aqueous solution of hypobromous acid temperature is at 25 degrees C, and it's "ph" is 4.48.
You would use the ph (4.48) to find the ka for "hbro"
[H+]
=
10^-4.48
=
3.31 x 10^-5 M
=
[BrO-]
or: [H+] = 10^-4.48 = 3.31 x 10^-5 M = [BrO-]
Then you would find ka:
(3.31 x 10^-5)^2/0.55 =2 x 10^-9
____________________________________________________
<em>-Julie</em>
Answer:
1) during a phase change: particles overcome forces of attraction and temperature stays the same not during a phase change: temperature rises 2)Particle motion decreases, and electrostatic forces pull particles closer together.
3) Gases fill their container, showing that gas particles are not tied together and can move far apart.
Explanation: