1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leona [35]
3 years ago
15

A hot-air balloon is descending at a rate of 2.3 m/s when a pas- senger drops a camera. If the camera is 41 m above the ground w

hen it is dropped, (a) how much time does it take for the cam- era to reach the ground, and (b) what is its velocity just before it lands? Let upward be the positive direction for this problem.
Physics
1 answer:
monitta3 years ago
3 0

Answer:

a) time taken = 2.66 s

b) v = 28.34

Explanation:

given,

rate of descending = 2.3 m/s

height of camera above ground = 41 m              

using equation of motion                      

h = u t + \dfrac{1}{2}gt^2              

41 =2.3t + \dfrac{1}{2}\times 9.8\times t^2

4.9 t² + 2.3 t - 41 =0                      

t = 2.66 ,-3.13                    

time taken = 2.66 s

b) v² = u² + 2 g h

v² = 0 + 2× 9.8 × 41

v = 28.34                            

You might be interested in
A friend rides, in turn, the rims of three fast merry-go-rounds while holding a sound source that emits isotropically at a certa
Aliun [14]

Complete Question

The complete question is shown on the first uploaded image

Answer:

a

The Ranking of the curve according to their speed would be equal Rank because    v_1 =v_2 =v_3

b

 The first frequency would have a higher rank compared to the other two which will have the same ranking when ranked with respect to their angular velocities because

                                w_1 >w_2 = w_3  

c

The ranking of  the second third frequency would be the same but their ranking would be greater than that of the first frequency because

                          r_2 =r_3 >r_1

Explanation:

Mathematically Frequency can be represented as

                         F = \frac{v}{\lambda}

Where \lambda is the wavelength and v is the velocity

   Now looking at the diagram we see that

          For the  first frequency we have

             Let the wavelength be  \lambda_1 = \lambda , and the frequency  F_1 = F

           For  the second frequency

           Let the wavelength be  \lambda_2 = 2 \lambda , and the frequency F_2 = \frac{F}{2}

           For  the third frequency

           Let the wavelength be  \lambda_3 = 2\lambda ,  and the frequency F_3 = \frac{F}{2}

To obtain v for each of the frequency we make v the subject in the equation above for each frequency

  So,

        For the  first frequency we have

                                 v_1 = \lambda_1 F_1 = \lambda F

          For  the second frequency

                               v_2 = \lambda_2 F_2 = 2 \lambda*\frac{F} {2} = \lambda F      

           For  the third frequency

                               v_3 = \lambda_3 F_3 = 2 \lambda*\frac{F} {2} = \lambda F

Hence

The Ranking of the curve according to their speed would be equal Rank because    v_1 =v_2 =v_3

 Mathematically angular speed can be represented as

                           w = 2 \pi f

   For the  first frequency we have

                          w_1 = 2\pi F_1 = 2 \pi F                        

    For  the second frequency

                        w_2 = 2 \pi F_2 = 2 \pi \frac{F}{2}  = \pi F

     For  the third frequency

                      w_3 = 2 \pi F_3 = 2 \pi \frac{F}{2}  = \pi F  

 Hence

          The first frequency would have a higher rank compared to the other two which will have the same ranking when ranked with respect to their angular velocities because

                                w_1 >w_2 = w_3  

Mathematically the relationship between the angular velocity and the linear velocity can be represented as

                            v = wr

                    =>    r = \frac{v}{w}

 Since the linear velocity is constant we have that

                            r \  \alpha \  \frac{1}{w}

This means that r varies inversely to the angular velocity ,What this means for ranking due to the radius is that the ranking of  the second third frequency would be the same but their ranking would be greater than that of the first frequency because

                          r_2 =r_3 >r_1

       

5 0
3 years ago
A ball of mass 0.120 kg is dropped from rest from a height of 1.25 m. It rebounds from the floor to reach a height of 0.820 m. W
Vikentia [17]

Answer:

1.0752 kgm/s

Explanation:

Considering when the drop was dropped from rest from a height,

mass of the ball, m = 0.120 kg

height, h = - 1.25 m

the initial velocity, u = 0 m/s

the acceleration due to gravity, g = - 9.8 m/s²

From equation of motion

                            V^{2} = U^{2} + 2gh

Substituting the values,

                             V^{2} = 0^{2} + 2(-9.8 m/s^{2})(-1.25 m)

                             V^{2} = 24.5 m/s

                             V = \sqrt{24.5} \ m/s

                             V = 4.95 \ m/s

                            V = ± 4.95 m/s

                            V = - 4.95 m/s

Since the ball is moving downward, the final velocity of the ball when it hits the floor is  V = - 4.95 m/s  

Considering when the ball rebounds from the floor,

assume the mass of the ball still remain, m = 0.120 kg

height, h = 0.820 m

the final velocity, v = 0 m/s  

the acceleration due to gravity, g = - 9.8 m/s²

From equation of motion

                            V^{2} = U^{2} + 2gh

Substituting the values,

                            0^{2} = U^{2} + 2(-9.8 m/s^{2})(0.820 m)

                            0 = U^{2} - 16.072 m/s

                            U^{2} = 16.072 m/s

                            U = \sqrt{16.072} \ m/s

                           U = ± 4.01 m/s

                          U = + 4.01 m/s

Since the ball is moving upward, the initial velocity of the ball from the bounce from the floor is  U = + 4.01 m/s                        

From Newton's second law of motion, applied force is directly proportional to the rate of change in momentum.

                            F = \frac{mv - mu}{t}

                          F.t = m(v - u)

       ⇒      Impulse = Change in momentum

To calculate the impulse, the moment before the ball hits the ground will be the initial momentum while the moment the ball rebounces will be the final velocity,                        

          ∴          F.t = 0.120  kg(4.01  m/s - (-4.95  m/s) )

                      F.t = 0.120  kg(4.01  m/s + 4.95  m/s) )

                      F.t = 0.120  kg × 8.96  m/s

                      Impulse  = 1.0752 kgm/s

The impulse given to the ball by the floor is 1.0752 kgm/s

                             

6 0
3 years ago
Which of the following statements describes the trend in the data?
AURORKA [14]

Answer:

Explanation:

The answer is D- The number of flies decreased, then leveled off.

6 0
2 years ago
Explain how you can work out the
Ne4ueva [31]

Answer:

The speed of light changes as it moves between media. This causes refraction. Angles of refraction can be calculated using known speeds or wavelengths. Beyond the critical angle, light is reflected.

8 0
3 years ago
Question 5 At 12:00 pm, a spaceship is at position ⎡⎣324⎤⎦ km ⎣ ⎢ ⎡ ​ 3 2 4 ​ ⎦ ⎥ ⎤ ​ km away from the origin with respect to so
Anettt [7]

Answer:

[1, 6, -2]

Explanation:

Given the following :

Initial Position of spaceship : [3 2 4] km

Velocity of spaceship : [-1 2 - 3] km/hr

Location of ship after two hours have passed :

Distance moved by spaceship :

Velocity × time

[-1 2 -3] × 2 = [-2 4 -6]

Location of ship after two hours :

Initial position + distance moved

[3 2 4] + [-2 4 -6] = [3 + (-2)], [2 + 4], [4 + (-6)]

= [3-2, 2+4, 4-6] = [1, 6, -2]

4 0
3 years ago
Other questions:
  • Propane (C3H8combines with oxygen gas (O2to form carbon dioxide (CO2and water (H2O). Describe the number and type of atoms for a
    8·1 answer
  • Why Ice Is Slippery?
    13·2 answers
  • How to calculate the velocity? the answer is 5.4 m/s I need the explication
    15·1 answer
  • A sequence of pitches occurring one after another is perceived: A. horizontally B. vertically C. texturally D. mechanically
    15·1 answer
  • A circular section of 25 mm diameter is welded (all the way around) to a wall and subject to a torsional load. Calculate the uni
    15·1 answer
  • If the mass of a ball B is 1 kilogram and it’s speed is 1 m/sec. the mass and the speed of ball A is three times the mass and sp
    11·2 answers
  • Products must equal which in a chemical reaction?
    10·1 answer
  • Water can be found in solid, liquid, and gaseous states. Which two processes would result in water changing to water vapor (or s
    7·1 answer
  • If you are pushing a box toward your friend with a force of 20 N, and your friend is pushing the box toward you with a force of
    14·1 answer
  • When two identical resistors are connected in series across ideal battery, total power dissipated by them is P. Now both are con
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!