The answer to the question is
<span>PE = W = 1/2 (kx^2)
16.2 = </span>1/2 (k(0.30)^2)
k = 360 J/m^2
A combination of longitudinal and transverse. :) yw
Answer:
Δt = 5.29 x 10⁻⁴ s = 0.529 ms
Explanation:
The simple formula of the distance covered in uniform motion can be used to find the interval between when the sound arrives at the right ear and the sound arrives at the left ear.

where,
Δt = required time interval = ?
Δs = distance between ears = 18 cm = 0.18 m
v = speed of sound = 340 m/s
Therefore,

<u>Δt = 5.29 x 10⁻⁴ s = 0.529 ms</u>
F~1/r²
doubling the distance r, Decreases the force by ¼
Answer:
Ive left an image here for use, I hope its helpful
Explanation:
I have left two images and i hope i am answering your question.