1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksano4ka [1.4K]
3 years ago
13

You're driving down the highway late one night at 22 m/s when a deer steps onto the road 38 m in front of you. Your reaction tim

e before stepping on the brakes is 0.50 s , and the maximum deceleration of your car is 10 m/s2 .
Physics
1 answer:
sleet_krkn [62]3 years ago
3 0

speed of the car is given on the road

v = 22 m/s

reaction time is given as

t = 0.50 s

now we can find the distance that it will move during this reaction time

d_1 = 22* 0.50 = 11 m

now the deceleration of the car is 10 m/s^2

so the distance that it will move before stop is given by

v_f^2 - v_i^2 = 2 a d

0^2 - 22^2 = 2*(-10)*d

d = 24.2 m

so the total distance that it require to stop is given as

d = 24.2 + 11 = 35.2 m

while the deer is standing at distance 38 m

so the car will stop 2.8 m before the position of deer


You might be interested in
What total mass must be converted into energy
Eduardwww [97]

This question apparently wants you to get comfortable
with  E = m c² .  But I must say, this question is a lame
way to do it.

c = 3 x 10⁸ m/s
                                                    E = m c²

                           1.03 x 10⁻¹³ joule  =  (m) (3 x 10⁸ m/s)²

Divide each side by (3 x 10⁸ m/s)²:

                         Mass = (1.03 x 10⁻¹³ joule) / (9 x 10¹⁶ m²/s²)

                                   =  (1.03 / 9) x (10⁻¹³ ⁻ ¹⁶) (kg)

                                   =        1.144 x 10⁻³⁰  kg .    (choice-1)

This is roughly the mass of (1 and 1/4) electrons, so it seems
that it could never happen in nature.  The question is just an
exercise in arithmetic, and not a particularly interesting one.
______________________________________

Something like this could have been much more impressive:
 
The Braidwood Nuclear Power Generating Station in northeastern
Ilinois USA serves Chicago and northern Illinois with electricity.
<span>The station has two pressurized water reactors, which can generate
a net total of 2,242 megawatts at full capacity, making it the largest
nuclear plant in the state.
If the Braidwood plant were able to completely convert mass
to energy, how much mass would it need to convert in order
to provide the total electrical energy that it generates in a year,
operating at full capacity ?

Energy = (2,242 x 10⁶ joule/sec) x (86,400 sec/day) x (365 da/yr)

             =  (2,242 x 10⁶ x 86,400 x 365) joules

             =          7.0704 x 10¹⁶ joules .

How much converted mass is that ?

                                           E  =  m c²

Divide each side by  c² :    Mass  =  E / c² .
c = 3 x 10⁸ m/s

              Mass = (7.0704 x 10¹⁶ joules) / (9 x 10¹⁶ m²/s²)

                        =        0.786 kilogram ! ! !

THAT should impress us !  If I've done the arithmetic correctly,
then roughly  (1 pound  11.7 ounces) of mass, if completely
converted to energy, would provide all the energy generated
by the largest nuclear power plant in Illinois, operating at max
capacity for a year !

</span>
7 0
2 years ago
Read 2 more answers
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.15
Oksanka [162]

1) 5.5 N

When the ball is at the bottom of the circle, the equation of the forces is the following:

T-mg = m\frac{v^2}{R}

where

T is the tension in the string, which points upward

mg is the weight of the string, which points downward, with

m = 0.158 kg being the mass of the ball

g = 9.8 m/s^2 being the acceleration due to gravity

m \frac{v^2}{R} is the centripetal force, which points upward, with

v = 5.22 m/s being the speed of the ball

R = 1.1 m being the radius of the circular trajectory

Substituting numbers and re-arranging the formula, we find T:

T=mg+m\frac{v^2}{R}=(0.158 kg)(9.8 m/s^2)+(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=5.5 N

2) 3.9 N

When the ball is at the side of the circle, the only force acting along the centripetal direction is the tension in the string, therefore the equation of the forces becomes:

T=m\frac{v^2}{R}

And by substituting the numerical values, we find

T=(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=3.9 N

3) 2.3 N

When the ball is at the top of the circle, both the tension and the weight of the ball point downward, in the same direction of the centripetal force. Therefore, the equation of the force is

T+mg=m\frac{v^2}{R}

And substituting the numerical values and re-arranging it, we find

T=m\frac{v^2}{R}-mg=(0.158 kg)\frac{5.22 m/s)^2}{1.1 m}-(0.158 kg)(9.8 m/s^2)=2.3 N

4) 3.3 m/s

The minimum velocity for the ball to keep the circular motion occurs when the centripetal force is equal to the weight of the ball, and the tension in the string is zero; therefore:

T=0\\mg = m\frac{v^2}{R}

and re-arranging the equation, we find

v=\sqrt{gR}=\sqrt{(9.8 m/s^2)(1.1 m)}=3.3 m/s

7 0
2 years ago
If a ball with an original velocity of zero is dropped from a tall structure and it takes 7 seconds to hit the ground, what velo
Colt1911 [192]
The velocity of the ball when it reaches the ground is equal to B. 68.6 m/s. This value was obtained from the formula Vf = Vi + at. Vf is the final velocity. Vi is the initial velocity. The acceleration is "a", while the time of travel is "t". The solution is:

<span>Vf = Vi + at
</span>Vf = 0 + (-9.8 m/s^2) (7 s)
Vf = -68.6 m/s

The negative sign denotes the direction of the ball.
5 0
3 years ago
Read 2 more answers
Reactants → products
Nat2105 [25]
The answer is A

Explanation: the conservation of matter means that the mass stays the same
4 0
2 years ago
Read 2 more answers
A street lamp weighs 150N. It is supported by two wires that form an angle of 120° with each other. The tensions in each wire ar
____ [38]

Answer:

60

so you take 120÷2 wires

4 0
2 years ago
Other questions:
  • a student conducts an experiment to determine how the additional of salt to water affects the density of the water. the student
    9·1 answer
  • A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet
    5·1 answer
  • People are more likely to treat someone kindly if they've you that person's bad behavior as the result of an external attributio
    12·2 answers
  • What is the distance a bike travels at 38 km/he for 4.5 seconds?
    8·1 answer
  • As the spaceship travels upward in the sky, some of its kinetic energy will be lost to the universe due to ?
    7·1 answer
  • What activity would require more impulse?
    7·1 answer
  • A power supply has an open-circuit voltage of 40.0 V and an internal resistance of 2.00 V. It is used to charge two storage batt
    15·1 answer
  • A 5kg fish swimming at 1 m/s swallows a 1 kg fish at rest. What is the final momentum of the big fish with the small fish in its
    9·1 answer
  • Convert 250 mm into km
    10·1 answer
  • How long does it take for a hook to reach the top of a building if the velocity is 50 m/s
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!