1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serious [3.7K]
3 years ago
14

Use each table to find the requested ratio. ITEM BANK: Move to Bottom 1:2 1:4 1:5 2:1 4:1 5:1

Mathematics
1 answer:
Cerrena [4.2K]3 years ago
3 0

Answer:

See below ~

Step-by-step explanation:

<u>Table 1</u>

⇒ Side length : Perimeter = <u>1 : 4</u>

⇒ Perimeter : Side length = <u>4 : 1</u>

<u></u>

<u>Table 2</u>

⇒ Radius : Diameter = <u>1 : 2</u>

⇒ Diameter : Radius = <u>2 : 1</u>

<u></u>

<u>Table 3</u>

⇒ Number of people : Number of tables = <u>5 : 1</u>

⇒ Number of tables : Number of people = <u>1 : 5</u>

You might be interested in
X=-y+3,3x-2y=-1 use substitution to solve the equation
4vir4ik [10]

Answer:

{x,y} = {1,2} I believe <3

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
What is the least common multiple of 2,6 and 8<br>a.24<br>b.48<br>c.12<br>d.2
Furkat [3]
C. 12 id your answer
5 0
4 years ago
Read 2 more answers
Last exam question for the day And im finally off!<br><br>No LINKS
love history [14]

Answer:

A1: a=4

A2: a=12

A3: p=18

Step-by-step explanation:

a= 1/2 4 * 2

= 4

a = 1/2 6 * 4

= 12

to find p add all sides

P= 6 + 6 + 6 = 18

6 0
3 years ago
Match the function in the left column with its period in the right column.
kiruha [24]

The results for the matching between function and its period are:

  • Option 1 - Letter D
  • Option 2 - Letter A
  • Option 3 - Letter C
  • Option 4 - Letter B

<h3>What is a Period of a Function?</h3>

If a given function presents repetitions, you can define the period as the smallest part of this repetition. As an example of periodic functions, you have: sin(x) and cos(x).

\mathrm{Period\:of\:}a\cdot \cos \left(bx\:+\:c\right)\:+\:d=\frac{\mathrm{periodicity\:of}\:\cos \left(x\right)}{|b|}

\mathrm{Period\:of\:}a\cdot \sin \left(bx\:+\:c\right)\:+\:d=\frac{\mathrm{periodicity\:of}\:\sin \left(x\right)}{|b|}

The period of sin(x) and cos(x) is 2π.

For solving this question, you should analyze each option to find its period.

1) Option 1

\mathrm{Periodicity\:of\:}a\cdot \cos \left(bx\:+\:c\right)\:+\:d=\frac{\mathrm{periodicity\:of}\:\cos \left(x\right)}{|b|}\\ \\ \mathrm{Periodicity\:of\:}a\cdot \cos \left(bx\:+\:c\right)\:+\:d=\frac{2\pi }{\frac{1}{2} }=4\pi

Thus, the option 1 matches with the letter D.

2) Option 2

\mathrm{Period\:of\:}a\cdot \sin \left(bx\:+\:c\right)\:+\:d=\frac{\mathrm{periodicity\:of}\:\sin \left(x\right)}{|b|}\\ \\ \mathrm{Period\:of\:}a\cdot \sin \left(bx\:+\:c\right)\:+\:d=\frac{2\pi}{4} =\frac{\pi }{2}

Thus, the option 2 matches with the letter A.

3) Option 3

\mathrm{Periodicity\:of\:}a\cdot \cos \left(bx\:+\:c\right)\:+\:d=\frac{\mathrm{periodicity\:of}\:\cos \left(x\right)}{|b|}\\ \\ \mathrm{Periodicity\:of\:}a\cdot \cos \left(bx\:+\:c\right)\:+\:d=\frac{2\pi}{2} =\pi

Thus, the option 3 matches with the letter C.

4) Option 4

\mathrm{Period\:of\:}a\cdot \sin \left(bx\:+\:c\right)\:+\:d=\frac{\mathrm{periodicity\:of}\:\sin \left(x\right)}{|b|}\\ \\ \mathrm{Period\:of\:}a\cdot \sin \left(bx\:+\:c\right)\:+\:d=\frac{2\pi}{8} =\frac{\pi }{4}

Thus, the option 4 matches with the letter B.

Read more about the period of a trigonometric function here:

brainly.com/question/9718162

#SPJ1

6 0
2 years ago
Please help<br>mathematics ​
fomenos
<h3>Given:</h3>
  • Trapezium
<h3>To find:</h3>
  • Length of BC
  • Value of "x"
<h3>Solution:</h3>

We can divide the given shape into a triangle and a rectangle.

We'll have to use Pythagoras Theorem.

\large\boxed{Formula:{a}^{2}={b}^{2}+{c}^{2}}

In this question we have to find the hypotenuse so we'll have to add.

Let's substitute the values according to the formula.

BC= {6}^{2}+{7}^{2}

BC= 85

BC =  \sqrt{ 85}

\boxed{BC=9.22 \: cm}

Now, we can find the value of "x"

  • Adjacent= 7 cm
  • Opposite= 6 cm
  • Hypotenuse= 9.22 cm

We can use any one from SOHCAHTOA.

Here I'm using tan.

\large\boxed{Formula: tan(a)= \frac{opp}{adj}}

Let's substitute the values according to the formula.

tan \: x= \frac{6}{7}

We'll have to use tan inverse.

x= {tan}^{-1}(\frac{6}{7})

\boxed{x=40.6°}

4 0
3 years ago
Read 2 more answers
Other questions:
  • Ian is a phycologist interested in determining the proportion of algae samples from a local rivulet that belonged to a particula
    12·1 answer
  • In the diagram, what is the ratio of patterned circles to plain circles?
    15·1 answer
  • HELP IF YOU'RE GOOD AT GEOMETRY
    9·1 answer
  • Please help me, I will give brainliest and 13 points!
    15·1 answer
  • Jake drove to California at a rate of 60 mph. If he stopped for gas 45 minutes into the trip, how far did he drive up to that po
    9·1 answer
  • 9. During the soccer season, Michelle attempted 130 goals and made about 70% of them. a. How many goals did Michelle make? b. Th
    12·1 answer
  • Help I cant fail this test
    10·1 answer
  • PLEASE HELP !! ILL GIVE BRAINLIEST !!
    12·1 answer
  • Can someone please help me with this please
    11·1 answer
  • Find the union {6, 11, 15} U Ø​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!