Answer:
There are 1.8021 ⋅ 1024 molecules of CH4 in 48 grams of CH4. To answer this question, you must understand how to convert grams of a molecule into the number of molecules. To do this, you have to utilize the concepts of moles and molar mass. A mole is just a unit of measurement. Avogadro's number is equal to 6.022 ⋅1023 molecules/mole. i think please dont complain to me if its wrong im sorry
Explanation:
Answer:
4.5 g/L.
Explanation:
- To solve this problem, we must mention Henry's law.
- Henry's law states that at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.
- It can be expressed as: P = KS,
P is the partial pressure of the gas above the solution.
K is the Henry's law constant,
S is the solubility of the gas.
- At two different pressures, we have two different solubilities of the gas.
<em>∴ P₁S₂ = P₂S₁.</em>
P₁ = 525.0 kPa & S₁ = 10.5 g/L.
P₂ = 225.0 kPa & S₂ = ??? g/L.
∴ S₂ = P₂S₁/P₁ = (225.0 kPa)(10.5 g/L) / (525.0 kPa) = 4.5 g/L.
Answer:
f = 33.34 Hz
Explanation:
A wave has a period of 0.03 seconds. It is required to find the frequency of a wave. The relation between time period and frequency is inverse. The time period of a wave is given by :
T = 1/f, f = frequency of wave

So, the frequency of the wave is 33.34 Hz.