Answer:
This question is incomplete
Explanation:
This question is incomplete because the result of the described experiment would have better determined the type of scientific explanation to profer. However, the type of material that will preserve the relative hotness or temperature of the hot coffee for the longest time will be a material than can resist heat transfer. These materials tend to keep hot substances hot by not allowing the heat of the coffee to be conducted or pass through it. These materials are mostly insulators or made by placing an insulator between two heat conductors.
Generally, heat is usually transferred from a region of higher concentration to a region of lower concentration, hence when the heat is denied of this transfer, the heat will remain trapped in the "heat-donor" substance (in this case the hot coffee). Thus, the material chosen (A, B or C) will be the material that resists heat transfer the most based on the explanation above.
Answer:
The major limitations of Newlands' law of octaves were : (i) It was applicable to only lighter elements having atomic masses upto 40 u, i.e., upto calcium. After calcium, the first and the eighth element did not have similar properties
15.3 litres of water will be produced if we take 1.7 litres of Hydrogen
Explanation:
Let's take a look over synthesis reaction;
<u> </u>
<u />
<u>Balancing the chemical reaction;</u>
<u> </u>
<u />
Thus, 2 moles of hydrogen molecules are required to form 2 moles of water molecules.
<u>Equating the molarity;</u>
<u />
= 
(Since, the molecular mass of hyd and water is 2 and 18 respectively)
x=
x= 15.3 litres.
Thus,15.3 L of water will be produced if we take 1.7 litres of Hydrogen in a synthesis reaction.
Answer:
Cr(OH)2(s), Na+(aq), and NO3−(aq)
Explanation:
Let is consider the molecular equation;
2NaOH(aq) + Cr(NO3)2(aq) -----> 2NaNO3(aq) + Cr(OH)2(s)
This is a double displacement or double replacement reaction. The reacting species exchange their partners. We can see here that both the sodium ion and chromium II ion both exchanged partners and picked up each others partners in the product.
Sodium ions and nitrate ions now remain in the solution while chromium II hydroxide which is insoluble is precipitated out of the solution as a solid hence the answer.