1. The hypothesis for this is experiment is that the 50:50 of methanol-water mixture will not turn to solid when the temperature reaches to -40°C.
2. The procedure for this is measuring equal volumes of water and methanol using the graduated cylinder. You can measure 100 mL of water and 100 mL of methanol using the graduated cylinder. Then, mix them in the beaker. Next, measure 200 mL of water, and another 200 mL of methanol. Don't mix them. Also, make a 60:40 mixture by measuring 120 mL of water and 80 mL of methanol, then mix them together. Place them all in the refrigerator at the same time. Record the time when they would freeze to solid.
3. The controls for this experiment are the 200 mL water alone, and the 200 mL methanol alone.
4. The independent variable in here is the time, while the dependent variable is the temperature of the mixtures.
5. If the hypothesis turns out to be true, then all the mixtures prepared should freeze and become solid after a certain period of time, with the exception of the 50:50 mixture. The 50:50 mixture should still remain as a liquid even when left overnight.
Answer:
a. 2 HgO(s) ⇒ 2 Hg(l) + O₂(g)
b. 0.957 g
Explanation:
Step 1: Write the balanced equation
2 HgO(s) ⇒ 2 Hg(l) + O₂(g)
Step 2: Convert 130.0 °C to Kelvin
We will use the following expression.
K = °C + 273.15
K = 130.0°C + 273.15
K = 403.2 K
Step 3: Calculate the moles of O₂
We will use the ideal gas equation.
P × V = n × R × T
n = P × V/R × T
n = 1 atm × 0.0730 L/0.0821 atm.L/mol.K × 403.2 K
n = 2.21 × 10⁻³ mol
Step 4: Calculate the moles of HgO that produced 2.21 × 10⁻³ moles of O₂
The molar ratio of HgO to O₂ is 2:1. The moles of HgO required are 2/1 × 2.21 × 10⁻³ mol = 4.42 × 10⁻³ mol.
Step 5: Calculate the mass corresponding to 4.42 × 10⁻³ moles of HgO
The molar mass of HgO is 216.59 g/mol.
4.42 × 10⁻³ mol × 216.59 g/mol = 0.957 g
Answer:
3.62 g/cm³
Explanation:
density = mass ÷ volume
Therefore, do 12.69 divided by 3.5
Answer:
10/9
Explanation:
First, let's convert 1/3 and 7/9 so that the have the same denominator. To do this let's find the least common multiple of 3 and 9.
List the multiples of 3 and 9:
3: 3, 9
9: 9
They have a least common multiple of 9
We need to convert 1/3 so it has a denominator of 9:
1/3*3/3 (we can multiply it by 3/3 because any number over itself is 1) = 3/9
s-3/9=7/9
Add 3/9 to both sides to isolate s
s=10/9
The correct answer is: False.
_______________________________________________________
Water expands (gets larger/ is less dense in solid form than in liquid form) when it freezes).
_______________________________________________________