The specific gravity or relative density of a substance is the ratio of its density to the density of a reference material. The relative density of the concentrated salt solution is 1.044.
Mathematically;
Density of the concentrated salt = mass of salt/volume of salt = 5.222 g/5.000 mL = 1.044 g/mL
In the case of specific gravity, the reference material is always water and water has a density of 1 g/mL.
Hence, specific gravity of the concentrated salt solution =
Density of concentrated salt solution/density of equal volume of water
= 1.044 g/mL/1 g/mL
= 1.044
Note that specific gravity is dimensionless.
Learn more: brainly.com/question/9638888
Answer:
0.805 M.
Explanation:
Hello!
In this case, since the molarity of a solution is computing by dividing the moles of solute over the volume of solution in liters (M=n/V), for 15.0 g of potassium chloride (74.55 g/mol) we compute the corresponding moles:

Next, since the volume is 0.2500 in liters, the molarity turns out:

Best regards!
To convert the mass of a compound to formula units, the conversion factor is Avogadro's number, 6.022 x10^23 formula units/ mol and its molar mass. In this case, we are given with 19.0 grams of magnesium chloride which has a mass of 95.21 g/mol. Hence the answer is 1.20 x 10^23 formula units.
Answer:
We will expect 4 moles of MgO to be formed (option b).
Explanation:
Step 1: The balanced equation
2Mg + O2 → 2MgO
Step 2: Data given
Number of moles of Magnesium = 4 moles
Oxygen = in excess → this means Magnesium is the limiting reactant
Magnesium will completely be consumed ( 4 moles). There will remain 0 moles.
For 2 moles of magnesium consumed, we need 1 mole of oxygen to produce 2 moles of MgO.
For 4 moles of magnesium, we need 4/2 = 2 moles of oxygen.
For 4 moles of magnesium, we will produce 4/1 = 4 moles of MgO
We will expect 4 moles of MgO to be formed (option b).
lanuage ? lanuage ? lanuage ?