I think the answer is 98 grams
Answer:
In the first combination neutralization takes place to give a salt. So, solution 'a' is neutral in nature.
In the solution 'c', both salts are resulted by the combination of weak base and strong acid. The combination of these salts suppresses the acidity.
In last combination basic nature is observed due to the presence of CN⁻ ions. Thus, the solution 'd' is basic in nature.
Out of the five given solutions, 0.0100 M in HF and 0.0100 M in KBr is most acidic. Therefore, solution 'b' is most acidic in nature.
Explanation:
To determine the mass of sucrose from a given volume of solution, we need to convert the volume into mass by using the density of the solution. We calculate as follows:
mass solution = 3.50 ( 1118 ) = 3913 g
mass of sucrose = 3913 g solution ( .485 g sucrose / g solution ) = 1897.805 g sucrose is present in the solution.
Answer: The concentrations of
at equilibrium is 0.023 M
Explanation:
Moles of
= 
Volume of solution = 1 L
Initial concentration of
= 
The given balanced equilibrium reaction is,

Initial conc. 0.14 M 0 M 0M
At eqm. conc. (0.14-x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[CO]\times [Cl_2]}{[COCl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BCOCl_2%5D%7D)
Now put all the given values in this expression, we get :

By solving the term 'x', we get :
x = 0.023 M
Thus, the concentrations of
at equilibrium is 0.023 M
Option C: Sulfur Dioxide is the answer
Hope this helps