Answer is 0.7 g
Reason: Given: mass of Fe = 5.60 gWe know that, half life of Fe-53 = t1/2 (Fe-53) = 8.51 min.
Thus, after 25.53 mins, number of half life passed = 25.53/8.51= 3
Now, Amount left after first half life = 5.60g/2 = 2.80 g
Amount left after second half life = 2.80g/2 = 1.40 g
Amount left after third half-life = 1.40g/2 = 0.7g.
In the periodic table, elements of the same group are characterized by having the same similar properties.
So, first we will check the elements that lie within the same group as <span>beryllium and then we will attempt to choose the elements with atomic mass higher than 130.
So, elements in the same group as </span>beryllium are: magnesium, calcium, strontium, barium and radium.
Among these elements, we will find that:
radium has atomic mass of 226 amu
barium has atomic mass of 137.327 amu
Based on this, the two elements would be barium and radium.
Answer : The standard enthalpy change for the combustion of CO(g) is, -283 kJ/mol
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The combustion of
will be,

The intermediate balanced chemical reaction will be,
(1)

(2)

Now we are reversing reaction 1 and then adding both the equations, we get :
(1)

(2)

The expression for enthalpy change for the reaction will be,



Therefore, the standard enthalpy change for the combustion of CO(g) is, -283 kJ/mol
Answer:
The common ion will be di-positive ion.
Explanation:
The ionization energy is defined as the amount of energy needed for removal of most loosely bound electron from an isolated atom in gaseous state.
The low ionization energy shows that the atom is able to give electron easily as after losing electron it may attain noble gas configuration or half filled stability.
Here the first and second ionization energy, both are low suggesting that the element is ready to give two electrons easily to form a di-positive ion however the third ionization energy is high which shows that it will not form tri-positive ion commonly.
Answer:
0.4444 g/cm³ ≅ 0.44 g/cm³ (2 significant figures).
Explanation:
<em>d = m/V,</em>
where, d is the density of the material (g/cm³).
m is the mass of the material (m = 28 g).
V is the volume of the material (V = 63.0 cm³).
<em>∴ d = m/V </em>= (28 g)/(63.0 cm³) = <em>0.4444 g/cm³ ≅ 0.44 g/cm³ (2 significant figures).</em>