Nanochemicals can be defined as chemicals generated by using nanomaterials (materials that possess of size on nanometer dimensions). The nanochemicals are used in multiple different applications including chemical warfare, bicycle making, armor design and military weapons crafting. The most commonly used and observed nanochemicals are carbon nanotubes that are used a ton in industry for applications such as stronger materials (stronger bicycles).
Smart materials are exquisitely designed materials whose property(ies) can be modified with the use of an external stimulus such as temperature, stress, pH, and so on. Some examples of smart materials include shape memory materials, piezoelectric materials, ferrofluids, self-healing materials, and such. Applications involve memory pillows, memory based solar panels (for satellites), light sensitive glasses, and so on.
Specialized materials are made specifically to perform a specified task or function. Applications involve electronic equipment (high purity silicon & germanium), machine tools (high tungsten high carbon steel), dental filling (dental amalgam), and so on.
Ans
Neutralization reaction
Explanation:
The meaning is
acid + base = salt + water
An animals life in a desert is to survive, depending on the type of desert though, but I assume the most common desert, the hot/dry desert. Most animals are nocturnal, because it becomes cooler at night, and live underground during the day.
Answer:
2.94 x
Explanation:
First we need to find out how many moles of ammonia there are, using the formula: Mass = mr x moles.
We know the mass is 83.1g, now we need to find the mR of ammonia - NH3.
N = 14, H = 1, so 14 + (3x1) = an mr of 17.
Moles = mass/ mr = 83.1/17 = 4.8882
Now we can multiply the moles by avogadro's constant to find the number of molecules:
4.8882 x (6.02 x
) = 2.94 x
molecules of ammonia
Answer:
C. A linear, nonpolar molecule
Explanation:
Molecules which are alike usually have the same degree of pull which results in them sharing electrons. This sharing of electrons is known as the molecules exhibiting Covalent bonding between them.
The equal pull also results in the cancelling out of electrons and favoring non polar bonds due to the absence of free electrons which would have been able to interact with H2O in a polar binding system.