The pressure of the gas in the flask (in atm) when Δh = 5.89 cm is 1.04 atm
<h3>Data obtained from the question</h3>
The following data were obtained from the question:
- Atmospheric pressure (Pa) = 730.1 torr = 730.1 mmHg
- Change in height (Δh) = 5.89 cm
- Pressure due to Δh (PΔh) = 5.89 cmHg = 5.89 × 10 = 58.9 mmHg
- Pressure of gas (P) =?
<h3>How to determine the pressure of the gas</h3>
The pressure of the gas can be obtained as illustrated below:
P = Pa + PΔh
P = 730.1 + 58.9
P = 789 mmHg
Divide by 760 to express in atm
P = 789 / 760
P = 1.04 atm
Thus, the pressure of the gas when Δh = 5.89 cm is 1.04 atm
Learn more about pressure:
brainly.com/question/22523697
#SPJ1
Missing part of question:
See attached photo
Answer:
The balanced chemical equation: NH₃ + 2 HF → NH₄⁺ + HF₂⁻
Explanation:
According to the Brønsted–Lowry acid–base theory, the acid- base reaction is a type of chemical reaction between the acid and base to give a conjugate acid and a conjugate base.
In this reaction, a Brønsted–Lowry acid loses a proton to form a conjugate base. Whereas, a Brønsted–Lowry base accepts a proton to form a conjugate acid.
Acid + Base ⇌ Conjugate Base + Conjugate Acid
The acid dissociation constant (Kₐ) <em>signifies the acidic strength of a chemical species.</em>
∵ pKₐ = - log Kₐ
Thus for a strong acid, Kₐ value is large and pKₐ value is small.
pKₐ (HF) = 3.2 → strong acid
pKₐ (NH₃) = 38 → weak acid
<u>The chemical reaction involved in the dissolution process:</u>
NH₃ + 2 HF → NH₄⁺ + HF₂⁻
In this acid-base reaction, the acid HF reacts with NH₃ base to give the conjugate base HF₂⁻ and conjugate acid NH₄⁺.
<u>HF (acid) donates a proton to form the conjugate base, HF₂⁻ ion. NH₃ (base) accepts a proton to form the conjugate acid. </u>
Chemical property can be referred to as a reaction into which a substance is changed
The answer is: b. Safety glasses and acid-resistant gloves.
Battery acid (sulfuric acid) has pH = 0.
Sulfuric acid (H₂SO₄) is a strong acid, it means that the solution of sufuric acid is more acidic (pH<7) than water (pH = 7).
Chemical dissociation of sulfuric acid in water:
H₂SO₄(aq) → 2H⁺(aq) + SO₄²⁻(aq).
Sulfuric acid can come in contact with eyes and hands, so it is important to wear safety glasses and acid-resistant gloves.