Ionization energy, also called ionization potential, in chemistry, the amount of energy required to remove an electron from an isolated atom or molecule.
Hello!
To start off, we must look at atomic masses. Atoms all have different weights, so we must first find hydrogen and oxygen's atomic masses.
Oxygen: 16.00 amu
Hydrogen: 1.01 amu
Now, moving on to the weight of water itself. Water has the formula of H20, with two hydrogen atoms and one oxygen. Therefore, <u>add up the amus to get the weight of one molecule of water.</u>
1.01 + 1.01 + 16.00 = 18.02 amu
Now, to see the ratio of each component. Since hydrogen weighs a total of 2.02 amu (1.01 + 1.01) in the entire atom, we can state that hydrogen makes up about 0.112 of the weight of water. Now apply that ratio to 16 g, and solve.
0.112x = 16
142.857143 = x
So therefore, about 143 grams of water are made when 16g of hydrogen reacts with excess oxygen.
Hope this helps!
Explanation:
For the given equation:
NH3 + HCl -> NH4Cl
This is an acid-base reaction (neutralization): NH3 is a base, HCl is an acid and NH4Cl is the sal.
Answer: b) NH3 is the base and NH4CI is the salt.
Answer:
Reduction: 2 H⁺(aq) + H₂O₂(aq) + 2 e⁻ ⇒ 2 H₂O(l)
Oxidation: H₂O₂(aq) ⇒ O₂(g) + 2 H⁺(aq) + 2 e⁻
Explanation:
In H₂O₂, hydrogen has the oxidation number +1 and oxygen the oxidation number -1.
In the reduction half-reaction (H₂O₂ is the oxidizing agent), H₂O₂ forms H₂O. The oxidation number of oxygen decreases from -1 to -2.
2 H⁺(aq) + H₂O₂(aq) + 2 e⁻ ⇒ 2 H₂O(l)
In the oxidation half-reduction (H₂O₂ is the reducing agent), H₂O₂ forms O₂. The oxidation number of oxygen increases from -1 to 0.
H₂O₂(aq) ⇒ O₂(g) + 2 H⁺(aq) + 2 e⁻