Answer:
Three possible blood type alleles are Iᴬ, Iᴮ and i
Explanation:
Iᴬ, Iᴮ and i are three possible blood type alleles.
Iᴬ and Iᴮ are known as co-dominant, and The i allele is recessive.
Thus, Three possible blood type alleles are Iᴬ, Iᴮ and i
<u>-TheUnknownScientist</u>
Answer:
Rate of forward reaction will increase.
Explanation:
Effect of change in reaction condition on equilibrium is explained by Le Chatelier's principle. According to this principle,
If an equilibrium condition of a dynamic reversible reaction is disturbed by changing concentration, temperature, pressure, volume, etc, then reaction will move will in a direction which counteract the change.
In the given reaction,
A + B ⇌ C + D
If concentration of A is increase, then reaction will move in a direction which decreases the concentration of A to reestablish the equilibrium.
As concentration A decreases in forward direction, therefore, rate of forward reaction will increase.
Given what we know, we can confirm that as with any experiment, the control variable will be the one that through each trial of the experiment, no matter how many times it is performed, stays constant.
<h3>What is a controlled variable?</h3>
- A variable that remains constant through an experiment.
- They are used to compare results to the normal condition.
- They are also used to isolate the changes to one factor at a time and thus know its exact effects on the outcome.
- This increases the accuracy of the data and the subsequent conclusion.
Therefore, we can confirm that if a variable stays constant through each phase and trial of an experiment, it is considered to be a controlled variable and is useful in order to increase the accuracy of the conclusion.
To learn more about control variables visit:
brainly.com/question/17555102?referrer=searchResults
Answer:
3.15 × 10⁻⁶ mol H₂/L.s
1.05 × 10⁻⁶ mol N₂/L.s
Explanation:
Step 1: Write the balanced equation
2 NH₃ ⇒ 3 H₂ + N₂
Step 2: Calculate the rate of production of H₂
The molar ratio of NH₃ to H₂ is 2:3. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of H₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 3 mol H₂/2 mol NH₃ = 3.15 × 10⁻⁶ mol H₂/L.s
Step 3: Calculate the rate of production of N₂
The molar ratio of NH₃ to N₂ is 2:1. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of N₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 1 mol N₂/2 mol NH₃ = 1.05 × 10⁻⁶ mol N₂/L.s