It depends on what type of transportation you would be using. If you were walking, it would be reeeaaaalllly slooowww. If a train, <em>much faster!</em>
Answer: false
Step-by-step explanation:
If f and g are increasing on I, this implies that f' > 0 on I and g' > 0 on I. That is both f' and g' have a positive slope. However,
Using product rule;
(fg)' = fd(g) + gd(f)
(fg)' = f * g' + f' * g
and although it is given that g' and f' are both positive we don't have any information about the sign of the values of the functions themselves(f and g). Therefore, if at least one of the functions has negative values there is the possibility that the derivative of the product will be negative. For example;
f = x, g = 5x on I = (-5, -2)
f' = 1 and g' =5 both greater than 0
f and g are both lines with positive slopes therefore they are increasing, but f * g = 5x^2 is decreasing on I.
Answer:
Step-by-step explanation:
Represent the length of one side of the base be s and the height by h. Then the volume of the box is V = s^2*h; this is to be maximized.
The constraints are as follows: 2s + h = 114 in. Solving for h, we get 114 - 2s = h.
Substituting 114 - 2s for h in the volume formula, we obtain:
V = s^2*(114 - 2s), or V = 114s^2 - 2s^3, or V = 2*(s^2)(57 - s)
This is to be maximized. To accomplish this, find the first derivative of this formula for V, set the result equal to 0 and solve for s:
dV
----- = 2[(s^2)(-1) + (57 - s)(2s)] = 0 = 2s^2(-1) + 114s - 2s^2
ds
Simplifying this, we get dV/ds = -4s^2 + 114s = 0. Then either s = 28.5 or s = 0.
Then the area of the base is 28.5^2 in^2 and the height is 114 - 2(28.5) = 57 in
and the volume is V = s^2(h) = 46,298.25 in^3
You would need 13/14 12in rulers to make it the size of the flag