Their weights could be different.
Their volumes could be different.
Their densities could be different.
The volume for an ounce of lead is much different than an ounce of aluminum.
the weight of a cubic meter of balsa wood is much different (and much lighter) than a cubic meter of water. That's why the ancients used balsa for their rafts.
Answer: The molarity of the solution is 0.125 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
where,
n = moles of solute
= volume of solution in L
moles of
=
Now put all the given values in the formula of molality, we get
Therefore, the molarity of the solution is 0.125 M
Answer:
<em>If it served you, give me 5 stars please, thank you!</em>
<em />
<em>m = </em><u><em>25</em></u><em> </em><em> </em><u><em>Kg</em></u>
Answer: Electronegativity increases as the size of an atom decrease.
Explanation: Electronegativity is the measure of the ability of an atom in a bond to attract electrons to itself.
Electronegativity increases across a period and decreases down a group.
Towards the left of the table, valence shells are less than half full, so these atoms (metals) tend
to lose electrons and have low electronegativity. Towards the right of the table, valence shells are more than half full, so these atoms (nonmetals) tend to gain electrons and have high electronegativity.
Down a group, the number of energy levels (n) increases, and so does the distance between the nucleus and the outermost orbital. The increased distance and the increased shielding weaken the nuclear attraction, and so an atom can’t attract electrons as strongly.