The answer is D, all of them have very different masses
Independent would be the amount of sugar given and the dependent would be the amount of cavities
Scientists have control groups so they can have evidence to show the difference between that one and the experimental ones.
And the independent variable is the one that changes because with out it changing you wouldn't get different results.
I could be wrong tho sorryyy! but i hope this helps
Answer:
it was Millikan. He conducted the oil drop experiment. Thomson determined the electon charge not the quantity. Rutherford used the gold foil experiment to find positive charge and that most of the atom is empty space. Dalton proposed that matter was made of small particles called atoms but that was a concept already proposed by ancient greeks. Dalton also proposed the atomic theory.
Answer:
1000 g
Explanation:
d = m/v
We are given d: 10g/cm3
and v: 100cm3
Plug them into the equation to get 10 = m/100
Then, cross multiply 10x100 to get mass which is: 1000g
Answer:
a. 1.78x10⁻³ = Ka
2.75 = pKa
b. It is irrelevant.
Explanation:
a. The neutralization of a weak acid, HA, with a base can help to find Ka of the acid.
Equilibrium is:
HA ⇄ H⁺ + A⁻
And Ka is defined as:
Ka = [H⁺] [A⁻] / [HA]
The HA reacts with the base, XOH, thus:
HA + XOH → H₂O + A⁻ + X⁺
As you require 26.0mL of the base to consume all HA, if you add 13mL, the moles of HA will be the half of the initial moles and, the other half, will be A⁻
That means:
[HA] = [A⁻]
It is possible to obtain pKa from H-H equation (Equation used to find pH of a buffer), thus:
pH = pKa + log₁₀ [A⁻] / [HA]
Replacing:
2.75 = pKa + log₁₀ [A⁻] / [HA]
As [HA] = [A⁻]
2.75 = pKa + log₁₀ 1
<h3>2.75 = pKa</h3>
Knowing pKa = -log Ka
2.75 = -log Ka
10^-2.75 = Ka
<h3>1.78x10⁻³ = Ka</h3>
b. As you can see, the initial concentration of the acid was not necessary. The only thing you must know is that in the half of the titration, [HA] = [A⁻]. Thus, the initial concentration of the acid doesn't affect the initial calculation.