Answer:
The given statement - The main criterion for sigma bond formation is that the two bonded atoms have valence orbitals with lobes that point directly at each other along the line between the two nuclei , is <u>True.</u>
Explanation:
The above statement is correct , because the sigma bond is produced by the head on overlapping, the orbitals should all point in the same direction.
<u>SIGMA BONDS -</u> Sigma bonds (bonds) are the strongest type of covalent chemical bond in chemistry. They're made up of atomic orbitals that collide head-on. For diatomic molecules, sigma bonding is best characterized using the language and tools of symmetry groups.
Head-on overlapping of atomic orbitals produces sigma bonds. The concept of sigma bonding is expanded to include bonding interactions where a single lobe of one orbital overlaps with a single lobe of another. Propane, for example, is made up of ten sigma bonds, one for each of the two CC bonds and one for each of the eight CH bonds.
Hence , the answer is true .
Answer:
Mass = 785.9 g
Explanation:
Given data:
Atoms of gold = 2.4 × 10²⁴ atoms
Mass of gold = ?
Solution:
First of all we will convert the number of atoms into moles.
2.4 × 10²⁴ atoms × 1 mol/ 6.02 × 10²³ atoms
number of moles = 3.99 mol
Now we will determine the mass of gold.
Mass = number of moles × molar mass
Mass = 3.99 mol × 196.97 g/mol
Mass = 785.9 g
Hi,
To solve the question, first of all we will find out the no. of moles of H2SO4 in 19 g of sulfuric acid.
As we know:
No . of moles = Mass/ Molar mass
No. of moles= 19 g/98.08
g
No. of moles= 0.1937
Now we know the no of moles of H2SO4 that will react with 2LiOH. We also know the molar equivalence of H2SO4 , and 2LiOH that will react.
So, the water that will be produced will be 2H2O and 1 Li2SO4 when H2SO4 that will react with 2LiOH.
0.1937 x 2x 18.01
=6.977
=6.98
Therefore, approximately 6.98 grams of water will be produced from 19 g of sulfuric acid.
Hope it helps!
Answer: bromine
Explanation:
There are a total of 2+2+6+2+6+2+10+5=35 electrons, meaning there are 35 protons. The element with atomic number 35 is <u>bromine</u>
Answer:
19.6 J
Step-by-step explanation:
Before the ball is dropped, it has a <em>potential energy
</em>
PE = mgh
PE = 0.2 × 10 × 9.8
PE = 19.6 J
Just before the ball hits the ground, the potential energy has been converted into kinetic (<em>mechanical</em>) energy.
KE = 19.6 J