We first need to find the number of moles of gas in the container
PV = nRT
where;
P - pressure - 2.87 atm x 101 325 Pa/atm = 290 802.75 Pa
V - volume - 5.29 x 10⁻³ m³
n - number of moles
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 230 K
substituting these values in the equation
290 802.75 Pa x 5.29 x 10⁻³ m³ = n x 8.314 Jmol⁻¹K⁻¹ x 230 K
n = 0.804 mol
the molar mass = mass present / number of moles
molar mass of gas = 56.75 g / 0.804 mol
therefore molar mass is 70.6 g/mol
Answer:
Your question is half unfinished, regarding the chromium III oxide the correct option that expresses the inorganic formula of said compound is "A"
Explanation:
In the reaction an initial salt reacts giving as product water vapor, nitrogen gas and an oxide that is chromium oxide.
Chromium oxide is an oxide that adopts the structure of corundum, compact hexagonal. It consists of an anion oxide matrix with 2/3 of the octahedral holes occupied by chromium. Like corundum, Cr2O3 is a tough, brittle material.
It is used as a pigment, green in color.
The synthesis of
Methyl Phenyl Ether is shown below,
The synthesis takes place in two steps,
Step 1: Formation of Sodium Phenoxide: Phenol being more acidic than Alcohols with
pKa ≈ 10 can loose its proton attached to oxygen atom, as the resulting phenoxide ion is stabilized by resonance. Therefore, when phenol is treated with NaOH (bBase) it looses proton and forms Sodium Phenoxide.
Step 2: Formation of Methyl Phenyl Ether: The Phenoxide ion formed in first step when treated with Dimethyl Sulfate produces Methyl Phenyl Ether through a
Williamson's Ether synthesis Reaction. Dimethyl sulfate is a well known alkylating agent when treated with phenols, thiols and amines. Dimethyl sulfate readily transfers the methyl group and forms NaSO₄CH₃.
The reaction is as follow,