Answer:
you will be able to create and representations the vertex - edge graphs.
The right answer for the question that is being asked and shown above is that: "fraction with numerator negative 3 minus i and denominator 10." This is the simplified expression fraction with numerator of the square root of negative one and denominator of the quantity three plus eight times i minus the <span>quantity two plus five times i.</span>
Answer:
x = 
y = 
Step-by-step explanation:
![2x-3y=5\\5x=4y=14\\\\\left[\begin{array}{cc}2&-3\\5&-4\\\end{array}\right] \left[\begin{array}{c}x\\y\\\end{array}\right] =\left[\begin{array}{c}5\\14\\\end{array}\right]](https://tex.z-dn.net/?f=2x-3y%3D5%5C%5C5x%3D4y%3D14%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-3%5C%5C5%26-4%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D5%5C%5C14%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Let A = ![\\\left[\begin{array}{cc}2&-3\\5&-4\\\end{array}\right]](https://tex.z-dn.net/?f=%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-3%5C%5C5%26-4%5C%5C%5Cend%7Barray%7D%5Cright%5D)
The inverse of A multiplied by A = the identity matrix ![\left[\begin{array}{cc}1&0\\0&1\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Inverse of A =
![\left[\begin{array}{ccc}-4&3\\-5&2\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%263%5C%5C-5%262%5C%5C%5Cend%7Barray%7D%5Cright%5D)
detA = ad - bc = 
Inverse of A = ![\left[\begin{array}{cc}\frac{-4}{7} &\frac{3}{7} \\\frac{-5}{7} &\frac{2}{7}\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B-4%7D%7B7%7D%20%26%5Cfrac%7B3%7D%7B7%7D%20%5C%5C%5Cfrac%7B-5%7D%7B7%7D%20%26%5Cfrac%7B2%7D%7B7%7D%5C%5C%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{cc}\frac{-4}{7} &\frac{3}{7} \\\frac{-5}{7} &\frac{2}{7}\\\end{array}\right] \left[\begin{array}{ccc}5\\14\\\end{array}\right] = \left[\begin{array}{ccc}\frac{22}{7} \\\frac{3}{7} \\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B-4%7D%7B7%7D%20%26%5Cfrac%7B3%7D%7B7%7D%20%5C%5C%5Cfrac%7B-5%7D%7B7%7D%20%26%5Cfrac%7B2%7D%7B7%7D%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C14%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B22%7D%7B7%7D%20%5C%5C%5Cfrac%7B3%7D%7B7%7D%20%5C%5C%5Cend%7Barray%7D%5Cright%5D)
So hmm a conjugate, is pretty much just, the same binomial, but with a different sign in the middle, so, a + b, has a conjugate of a - b
or -a + b, has a conjugate of - a - b, or c - d, has a conjugate of c +d, and so on
anyway, the idea being, to "rationalize" the expression, namely, getting rid of the pesky radical in the denominator
so, we'll multiply the expression by 1, since anything times 1 is just itself
however, bear in mind, that 1, can be a/a, or b/b, or cheese/cheese, or anything/anything
so, we'll multiply the top and bottom of the fraction, by the conjugate of the denominator
anyhow, that said