C13H19O2 = (12 * 13) + (1 *19) + (16 *2) = 156 + 19 + 32 = 207.
The formula is n = molar mass of molecular formular / molar mass of empirical formular. MM of molecular formula = 414.7 and of empirical formula =207
So n = 414.7 / 207 = 2.
So the true molecular formula is 2(C13H19O9) = C26H38O18.
Adding hot cocoa to hot water would be a chemical change
Because of the attraction forces known as hydrogen bonding, water is referred to as a polar solvent. An attraction between molecules known as a hydrogen bond occurs when partially positive hydrogen atoms are drawn to partially negative F, O, or N atoms.
<h3>What is a hydrogen bond?</h3>
A hydrogen bond (or H-bond) is a strong electrostatic attraction between an electronegative atom holding a lone pair of electrons, known as the hydrogen bond acceptor, and a hydrogen (H) atom that is covalently attached to a more electronegative "donor" atom or group.
<h3>How can hydrogen atoms join together?</h3>
When a hydrogen atom bonds with an electronegative atom, powerful intermolecular forces called hydrogen bonds are produced. The hydrogen bond acceptor's electronegativity will rise, resulting in a stronger hydrogen bond.
To know more about Hydrogen Bond visit:
brainly.com/question/10904296
#SPJ4
Velocity and mass are directly proportional to the quantity of momentum by:
p = mv. Therefore, and increase in either velocity or mass will lead to an increase in momentum and vice versa. Momentum during a reaction is always conserved, meaning that the mass and initial velocity before a reaction will always be equal to the change in mass and velocity produced after the reaction. Kinetic energy after a reaction, however, is not always conserved. For example if a fast moving vehicle collided with a stationary vehicle, and moved together, the overall kinetic energy would be after the reaction, as a heaver mass would be moved by the same velocity causing a decrease in kinetic energy.
I don't know if this is exactly what you are looking for, but in physics this is how it is understood.