Answer: The correct answer is in an exothermic reaction the energy of the product is less than the energy of the reactants.
Explanation: got it
<u>Answer:</u> The half life of the given radioactive isotope is 43.86 minutes
<u>Explanation:</u>
Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = ?
t = time taken for decay process = 233 minutes
= initial amount of the reactant = 0.500 M
[A] = amount left after decay process = 0.0125 M
Putting values in above equation, we get:

The equation used to calculate half life for first order kinetics:

where,
= half-life of the reaction = ?
k = rate constant = 
Putting values in above equation, we get:

Hence, the half life of the given radioactive isotope is 43.86 minutes
Answer:
electron-electron repulsion
Explanation:
When electrons add into valence shell of neutral elements, the element assumes a negative oxidation state. With this, the number of electrons having (-) charges will be larger than the number of protons having positive (+) charges. As a result, the extra electrons repel one another (i.e., like charges repel) and a larger radius is the result.
In contrast, when cations are formed, electrons are removed from the valence level (oxidation) producing an element having a greater number of protons than electrons. The larger number of protons will function to attract the electron cloud with a greater force that results in a contraction of atomic radius and a smaller spherical volume than the neutral unionized element.
To visualize, see attached chart that shows atomic and ionic radii before and after ionization of the elements.
Answer: ( C ) IBr3
Explanation: Iodine tribromide formula is IBr3
***If you found my answer helpful, please give me the brainliest, please give a nice rating, and the thanks ( heart icon :) ***
Answer:

Explanation:
Hello!
In this case, since the undergoing chemical reaction is:

We first need to identify the limiting reactant given the masses of nitrogen and hydrogen:

It means that only 0.647 moles of ammonia are yielded, so the resulting enthalpy change is:

Best regards!